论文标题

使用Muon $ g \ textrm { - } 2 $实验朝向粒子物理的边界

Toward the Frontiers of Particle Physics With the Muon $g\textrm{-}2$ Experiment

论文作者

Valetov, Eremey

论文摘要

Fermilab的Muon $ g \ textrm { - } 2 $实验(e989)的目标是使用正极序列的精度来测量Muon异常($A_μ$)。该测量是由先前的Brookhaven $A_μ$测量和标准模型预测之间的差异超过三个标准偏差的差异,这暗示了物理可能超出标准模型的可能性。在储存环中循环μ子,测量需要从产生的衰减正电子时间和用热量表收集的能量测量值来精确确定μ子异常进液频率(旋转液压相对于动量)。需要高精度知道兆兆的平均磁场,因此存储环磁场被杂乱无章以非常均匀,并通过核磁共振(NMR)探针不断监测。还需要详细的MUON校园光束线和MUON存储环模拟来量化光束动力学和与自旋相关的系统效应,以确定MUON异常进动频率,例如在测量窗口期间,若子损失。会议时,该实验最近开始了RUN-3,并计划在2020年发布Run-1物理结果。

The Muon $g\textrm{-}2$ Experiment (E989) at Fermilab has a goal of measuring the muon anomaly ($a_μ$) with unprecedented precision using positive muons. This measurement is motivated by the difference between the previous Brookhaven $a_μ$ measurement and Standard Model prediction exceeding three standard deviations, which hints at the possibility of physics beyond the Standard Model. Muons are circulated in a storage ring, and the measurement requires a precise determination of the muon anomalous precession frequency (spin precession relative to momentum) from the resulting decay positron time and energy measurements collected with calorimeters. The average magnetic field seen by the muons needs to be known with high precision, and so the storage ring magnetic field is shimmed to be very uniform and is continually monitored with nuclear magnetic resonance (NMR) probes. Detailed Muon Campus beamline and muon storage ring simulations are also required for quantifying beam dynamics and spin-related systematic effects in the determination of the muon anomalous precession frequency, e.g. muon losses during the measurement window. At the time of the conference, the experiment has recently commenced Run-3, and the release of Run-1 physics results is planned for 2020.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源