论文标题
可重新配置的智能表面辅助大型MIMO,并选择天线
Reconfigurable Intelligent Surface Assisted Massive MIMO with Antenna Selection
论文作者
论文摘要
天线选择能够以某些性能退化为代价降低大量多输入(MIMO)网络的硬件复杂性。可重新配置的智能表面(RIS)已成为一种具有成本效益的技术,可以通过重新配置传播环境来增强无线网络的光谱效率。通过使用RIS来补偿由于选择天线而引起的性能损失,在本文中,我们提出了一种新的网络体系结构,即使用天线选择的RIS辅助大型MIMO系统,以增强系统性能,同时享受低硬件成本。这是通过通过关节天线选择和被动边缘成形最大化通道容量来实现的,同时考虑了所有RIS元素的主动天线的基数约束和单位模式约束。然而,由于非凸约限制和耦合优化变量,该法式问题非常棘手,为此提供了交替的优化框架,从而产生了天线选择和被动横梁成形的子问题。开发了在不同的通道状态信息假设下求解天线选择子问题的计算效率下二次优化算法。通过利用唯一的问题结构,进一步提出了基于块坐标下降的迭代算法,以进一步提出用于被动波束形成设计。实验结果将证明针对具有天线选择的RIS辅助大型MIMO系统的算法优势和理想的性能。
Antenna selection is capable of reducing the hardware complexity of massive multiple-input multiple-output (MIMO) networks at the cost of certain performance degradation. Reconfigurable intelligent surface (RIS) has emerged as a cost-effective technique that can enhance the spectrum-efficiency of wireless networks by reconfiguring the propagation environment. By employing RIS to compensate the performance loss due to antenna selection, in this paper we propose a new network architecture, i.e., RIS-assisted massive MIMO system with antenna selection, to enhance the system performance while enjoying a low hardware cost. This is achieved by maximizing the channel capacity via joint antenna selection and passive beamforming while taking into account the cardinality constraint of active antennas and the unit-modulus constraints of all RIS elements. However, the formulated problem turns out to be highly intractable due to the non-convex constraints and coupled optimization variables, for which an alternating optimization framework is provided, yielding antenna selection and passive beamforming subproblems. The computationally efficient submodular optimization algorithms are developed to solve the antenna selection subproblem under different channel state information assumptions. The iterative algorithms based on block coordinate descent are further proposed for the passive beamforming design by exploiting the unique problem structures. Experimental results will demonstrate the algorithmic advantages and desirable performance of the proposed algorithms for RIS- assisted massive MIMO systems with antenna selection.