论文标题

量子晶体对称性的统一理论

Unified Theory of Quantum Crystalline Symmetries

论文作者

Zhao, Y. X., Shao, L. B.

论文摘要

对称组在量子力学中有影响,并且晶体对称性在凝结物理学中至关重要。在这里,我们从两个互补方面系统地提出了量子机械空间组的统一理论。首先,我们为空间组因子系统提供了分解形式,以表征所有量子空间群。它由三个因素组成:翻译子组$ l $的因子系统,点组$ p $的内均质因子系统,以及连接$ l $和$ p $的因子。这三个因素满足三个一致性方程,这些方程式是可以解决的,并且可以完全耗尽空间组的所有因素系统。其次,由于因子系统由第二个共同学组分类,因此我们表明,空间组的(CO)同源组可以从Borel的Equivariant(CO)同源性理论中得出,该理论可以导致可以计算空间组的所有(CO)同源组的算法。为了证明一般理论,我们用$ \ mathbb {z} _2 $ gauge组明确地呈现量子壁纸组。此外,作为一种原始应用,我们发现具有反转对称性的时间反转量子空间基团可以导致一种新颖的克利福德带理论,在该理论中,每个频段都是四倍的变性,以表示某些真实的Clifford代数,其在Brillouin Zone上具有拓扑上的非动力销钉结构。我们的工作是探索量子机械空间组的基础,可以在自旋液体,非常规的超导体和人造晶格系统中找到应用,包括冷原子,光子和声音晶体,甚至是LC电路网络。

Symmetry groups are projectively represented in quantum mechanics, and crystalline symmetries are fundamental in condensed matter physics. Here, we systematically present a unified theory of quantum mechanical space groups from two complementary aspects. First, we provide a decomposition form for the space-group factor systems to characterize all quantum space groups. It consists of three factors, the factor system for the translation subgroup $L$, an in-homogeneous factor system for the point group $P$, and a factor connecting $L$ and $P$. The three factors satisfy three consistency equations, which are exactly solvable and can completely exhaust all factor systems for space groups. Second, since factors systems are classified by the second cohomology group, we show the (co)homology groups for space groups can be derived from Borel's equivariant (co)homology theory, which leads to an algorithm that can compute all (co)homology groups for space groups. To demonstrate the general theory, we explicitly present quantum wallpaper groups with the $\mathbb{Z}_2$ gauge group. Furthermore, as a primitive application, we find the time-reversal invariant quantum space groups with inversion symmetry can lead to a novel clifford band theory, where each band is fourfold degenerate to represent certain real Clifford algebras with topologically nontrivial pinor structures over the Brillouin zone. Our work serves as a foundation for exploring quantum mechanical space groups, and can find applications in spin liquids, unconventional superconductors, and artificial lattice systems, including cold atoms, photonic and phononic crystals, and even LC electric circuit networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源