论文标题
使用电场的反应性分子的共振碰撞屏蔽
Resonant collisional shielding of reactive molecules using electric fields
论文作者
论文摘要
对包括反应性损失在内的分子相互作用的完全控制将开放量子科学的新边界。在这里,我们通过使用外部电场将激发的超速分子的激发碰撞通道转变为与初始碰撞通道的退化性,从而证明了化学反应速率的极端可调性。在这种情况下,谐振偶极相互作用将通道远距离混合,从而极大地改变了分子间电位。我们在其第一个激发旋转状态下制备费米子钾(KRB)分子,并观察到化学反应速率的三个魔力调制调制,因为我们将电场强度调整为整个谐振的百分之几百分之几。在准二维几何形状中,我们准确地确定了碰撞的三个最低角动量投影的贡献。使用谐振特征,我们将分子免于损失,并以低于背景值的数量级抑制反应速率,从而实现了大型电场中极性分子的长期样本。
Full control of molecular interactions, including reactive losses, would open new frontiers in quantum science. Here, we demonstrate extreme tunability of chemical reaction rates by using an external electric field to shift excited collision channels of ultracold molecules into degeneracy with the initial collision channel. In this situation, resonant dipolar interactions mix the channels at long range, dramatically altering the intermolecular potential. We prepare fermionic potassium-rubidium (KRb) molecules in their first excited rotational state and observe a three orders-of-magnitude modulation of the chemical reaction rate as we tune the electric field strength by a few percent across resonance. In a quasi-two-dimensional geometry, we accurately determine the contributions from the three lowest angular momentum projections of the collisions. Using the resonant features, we shield the molecules from loss and suppress the reaction rate by up to an order of magnitude below the background value, realizing a long-lived sample of polar molecules in large electric fields.