论文标题
在Reissner-Weyl - Nordström黑洞时空中的测试电子的狄拉克操作员上
On the Dirac operator for a test electron in a Reissner--Weyl--Nordström black hole spacetime
论文作者
论文摘要
本文研究了测试电子的狄拉克汉密尔顿,其域的域域分别在超极端RWN黑洞的事件地平线内部分别支撑在超级RWN RWN黑孔时段内的cauchy地平线内。 发现这种狄拉克·哈密顿(Dirac Hamiltonian)本质上不是自我偶然,但具有无限的自我预科扩展。 在狄拉克·哈密顿(Dirac Hamiltonian)中包括足够大的异常磁矩相互作用,可以恢复基本的自我相关性;电子异常磁矩的经验值足够大。 具有异常磁矩的超级自动接合dirac操作员的光谱纯粹是连续的,由整个真实线组成。特别是没有特征值。 在超级黑洞下环境中,没有异常的磁矩相互作用的任何自偶会延伸的频谱也是如此。 在极端黑洞扇区中,点频谱(如果非空)由一个单个特征值组成,该值已被鉴定出来。
The present paper studies the Dirac Hamiltonian of a test electron with a domain of bi-spinor wave functions supported on the static region inside the Cauchy horizon of the subextremal RWN black hole spacetime, respectively inside the event horizon of the extremal RWN black hole spacetime. It is found that this Dirac Hamiltonian is not essentially self-adjoint, yet has infinitely many self-adjoint extensions. Including a sufficiently large anomalous magnetic moment interaction in the Dirac Hamiltonian restores essential self-adjointness; the empirical value of the electron's anomalous magnetic moment is large enough. The spectrum of the subextremal self-adjoint Dirac operator with anomalous magnetic moment is purely absolutely continuous and consists of the whole real line; in particular, there are no eigenvalues. The same is true for the spectrum of any self-adjoint extension of the Dirac operator without anomalous magnetic moment interaction, in the subextremal black hole context. In the extremal black hole sector the point spectrum, if non-empty, consists of a single eigenvalue, which is identified.