论文标题
联合的动态GNN具有安全的聚合
Federated Dynamic GNN with Secure Aggregation
论文作者
论文摘要
给定了来自多个个人设备或街道摄像机的视频数据,我们是否可以利用结构和动态信息来学习针对分布式监视等应用程序的对象的动态表示,而无需将数据存储在中央服务器上,从而导致违反用户隐私的情况?在这项工作中,我们介绍了联合动态图神经网络(FIDDY),这是一个分布式和安全的框架,可从多用户图序列中学习对象表示:i)它从当前图中的附近对象以及从前图中的那些汇总了附近对象的结构信息。它使用了预测对象轨迹的自我监督损失。 ii)以联合学习方式对其进行培训。位于中央的服务器将模型发送到用户设备。相应的用户设备上的本地模型学习并定期将其学习发送到中央服务器,而无需将用户的数据曝光到服务器。 iii)研究表明,在服务器执行加权平均值后,在向客户广播以进行模型同步时,可以检查汇总的参数。我们设计了一种适当的汇总聚合原始基底的聚合机制,可以通过可扩展性保护联合学习的安全性和隐私。在四个摄像机数据集(在四个不同场景中)上进行的实验以及模拟表明,Feddy可以实现出色的有效性和安全性。
Given video data from multiple personal devices or street cameras, can we exploit the structural and dynamic information to learn dynamic representation of objects for applications such as distributed surveillance, without storing data at a central server that leads to a violation of user privacy? In this work, we introduce Federated Dynamic Graph Neural Network (Feddy), a distributed and secured framework to learn the object representations from multi-user graph sequences: i) It aggregates structural information from nearby objects in the current graph as well as dynamic information from those in the previous graph. It uses a self-supervised loss of predicting the trajectories of objects. ii) It is trained in a federated learning manner. The centrally located server sends the model to user devices. Local models on the respective user devices learn and periodically send their learning to the central server without ever exposing the user's data to server. iii) Studies showed that the aggregated parameters could be inspected though decrypted when broadcast to clients for model synchronizing, after the server performed a weighted average. We design an appropriate aggregation mechanism of secure aggregation primitives that can protect the security and privacy in federated learning with scalability. Experiments on four video camera datasets (in four different scenes) as well as simulation demonstrate that Feddy achieves great effectiveness and security.