论文标题
门套层析成像
Gate Set Tomography
论文作者
论文摘要
门集断层扫描(GST)是量子计算处理器上逻辑操作(门)的详细预测表征的协议。 GST的早期版本左右出现在2012 - 13年左右,从那以后,它已被完善,证明并用于大量实验。本文详细介绍了GST的基础。与较旧的状态和过程断层扫描协议相比,GST最重要的特征是它是无校准的。 GST不依赖于预校准的状态制剂和测量。取而代之的是,它相对于彼此,同时且一致地表征了门集中的所有操作。长序列GST可以以很高的精度和效率来估算门,从而在实践中实现Heisenberg扩展。在本文中,我们涵盖了商品及服务税的智力历史,用于实现其预期目的,数据分析,规格自由和固定,误差条的技术和实验,以及对栅极集的量规估计的解释。我们的重点是GST的基本数学方面,而不是实现细节,但我们涉及Pygsti实施中使用的一些基础算法技巧。
Gate set tomography (GST) is a protocol for detailed, predictive characterization of logic operations (gates) on quantum computing processors. Early versions of GST emerged around 2012-13, and since then it has been refined, demonstrated, and used in a large number of experiments. This paper presents the foundations of GST in comprehensive detail. The most important feature of GST, compared to older state and process tomography protocols, is that it is calibration-free. GST does not rely on pre-calibrated state preparations and measurements. Instead, it characterizes all the operations in a gate set simultaneously and self-consistently, relative to each other. Long sequence GST can estimate gates with very high precision and efficiency, achieving Heisenberg scaling in regimes of practical interest. In this paper, we cover GST's intellectual history, the techniques and experiments used to achieve its intended purpose, data analysis, gauge freedom and fixing, error bars, and the interpretation of gauge-fixed estimates of gate sets. Our focus is fundamental mathematical aspects of GST, rather than implementation details, but we touch on some of the foundational algorithmic tricks used in the pyGSTi implementation.