论文标题
量子通信的耐故障编码
Fault-tolerant Coding for Quantum Communication
论文作者
论文摘要
设计编码和解码电路以可靠地发送噪音通道的许多用途的消息是通信理论中的一个核心问题。在研究可实现的最佳传输速率通过渐近消失的误差可实现的时,通常假定可以使用无噪声门实现这些电路。尽管在许多情况下对经典机器满足了此假设,但预计在量子机的近期将来不会满足这种假设,因为量子机会导致量子门中的故障。结果,有关量子通道编码的实际相关性的基本问题仍然开放。通过将易耐故障量子计算的技术与量子通信的技术相结合,我们启动了这些问题的研究。我们介绍了量子能力的易耐故障版本,以量化最佳通信率,而当编码和解码电路受可能发生较小概率的门错误影响时,可以通过渐近消失的总误差来实现的最佳通信率。我们的主要结果是经典和量子容量的阈值定理:对于每个量子通道$ t $和每个$ε> 0 $,存在一个阈值$ p(ε,t)$的阈值$ p(ε,t)$低于低于$ c-c-ε$的速率大于$ c-ε$的速率是可实现的,而故障的总体通信误差可消失,其中$ c $ c $ c $ co $表示所需的用途。我们的结果不仅与大距离的通信相关,而且还与片上有关,在芯片上,量子计算机的遥远部分可能需要在噪音较高的噪声下进行通信,而不是影响当地的大门。
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usually assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolerant versions of quantum capacities quantifying the optimal communication rates achievable with asymptotically vanishing total error when the encoding and decoding circuits are affected by gate errors with small probability. Our main results are threshold theorems for the classical and quantum capacity: For every quantum channel $T$ and every $ε>0$ there exists a threshold $p(ε,T)$ for the gate error probability below which rates larger than $C-ε$ are fault-tolerantly achievable with vanishing overall communication error, where $C$ denotes the usual capacity. Our results are not only relevant in communication over large distances, but also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise than affecting the local gates.