论文标题

机器学习可以预测危重患者的连续生理数据早期发作

Machine learning predicts early onset of fever from continuous physiological data of critically ill patients

论文作者

Singh, Aditya, Mohammed, Akram, Chinthala, Lokesh, Kamaleswaran, Rishikesan

论文摘要

发烧可以提供有价值的信息,用于诊断和预后各种疾病,例如肺炎,登革热,败血症等,因此,早期预测发烧可以帮助治疗方案的有效性并加快治疗过程。这项研究旨在开发新的算法,通过在连续的生理数据上应用机器学习技术,可以准确预测重病患者的发烧。我们分析了从2年的重症监护病房(ICU)允许的超过20万名重症患者的队列中每5分钟收集的连续生理数据。同一患者发烧的每一集被认为是一个独立事件,分离至少为24小时。我们从六个生理数据流中提取了描述性统计特征,包括心率,呼吸,收缩压和舒张压,平均动脉压和氧饱和度,并使用这些特征来独立预测发烧的发作。使用Bootstrap聚合方法,我们创建了一个平衡的数据集,该数据集由7,801例AFEBRILE和发热患者创建,并在发烧发作前长达4个小时进行了分析。我们发现,有监督的机器学习方法可以预测发烧长达4小时前,患有召回,精度和F1得分的患病患者发病。这项研究表明,使用机器学习预测住院成年人的发烧的生存能力。通过机器学习和深度学习技术发现显着的物理标志物,有可能进一步加速医疗脆弱患者的创新护理提供方案和策略的开发和实施。

Fever can provide valuable information for diagnosis and prognosis of various diseases such as pneumonia, dengue, sepsis, etc., therefore, predicting fever early can help in the effectiveness of treatment options and expediting the treatment process. This study aims to develop novel algorithms that can accurately predict fever onset in critically ill patients by applying machine learning technique on continuous physiological data. We analyzed continuous physiological data collected every 5-minute from a cohort of over 200,000 critically ill patients admitted to an Intensive Care Unit (ICU) over a 2-year period. Each episode of fever from the same patient were considered as an independent event, with separations of at least 24 hours. We extracted descriptive statistical features from six physiological data streams, including heart rate, respiration, systolic and diastolic blood pressure, mean arterial pressure, and oxygen saturation, and use these features to independently predict the onset of fever. Using a bootstrap aggregation method, we created a balanced dataset of 7,801 afebrile and febrile patients and analyzed features up to 4 hours before the fever onset. We found that supervised machine learning methods can predict fever up to 4 hours before onset in critically ill patients with high recall, precision, and F1-score. This study demonstrates the viability of using machine learning to predict fever among hospitalized adults. The discovery of salient physiomarkers through machine learning and deep learning techniques has the potential to further accelerate the development and implementation of innovative care delivery protocols and strategies for medically vulnerable patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源