论文标题
计算球形震荡灵敏度内核的一般公式,同时结合了系统效应
A general formulation for computing spherical helioseismic sensitivity kernels while incorporating systematical effects
论文作者
论文摘要
随着HelioseSology的成熟并变成一门精确的科学,建模有限频率,几何和系统影响变得越来越重要。在这里,我们介绍了一种通用公式,用于使用量子力学的基本思想及其在地球物理学中的扩展来处理球形几何的任意张量排名的扰动。我们在分析中包括视线预测和线形成高度的中心差异。我们通过计算旅行时间灵敏度内核来证明该技术的声速扰动。该分析产生灵敏度内核的球形谐波系数,从而导致更好的和计算上有效的反问题。
As helioseismology matures and turns into a precision science, modeling finite-frequency, geometric and systematical effects is becoming increasingly important. Here we introduce a general formulation for treating perturbations of arbitrary tensor rank in spherical geometry using fundamental ideas of quantum mechanics and their extensions in geophysics. We include line-of-sight projections and center-to-limb differences in line-formation heights in our analysis. We demonstrate the technique by computing a travel-time sensitivity kernel for sound-speed perturbations. The analysis produces the spherical harmonic coefficients of the sensitivity kernels, which leads to better-posed and computationally efficient inverse problems.