论文标题
SA-NET:图像群集的深度频谱分析网络
SA-Net: A deep spectral analysis network for image clustering
论文作者
论文摘要
尽管有监督的深层表示学习吸引了在模式识别和计算机视觉领域的巨大关注,但在无监督的深层表示学习中,几乎没有取得进展。在本文中,我们提出了一个深度的光谱分析网络,用于无监督的表示学习和图像聚类。尽管光谱分析是以固体理论基础建立的,并已广泛应用于无监督的数据挖掘,但其本质弱点在于,很难构造适当的亲和力矩阵并确定涉及给定数据集的laplacian矩阵。在本文中,我们提出了一个SA-NET来克服这些弱点,并通过将光谱分析程序扩展到具有多层的深度学习框架中,从而改善了图像聚类。 SA-NET具有学习深度表示并揭示数据样本之间的深层相关性的能力。与现有的光谱分析相比,SA-NET实现了两个优点:(i)鉴于一个光谱分析程序只能处理给定数据集的一个子集,我们提议的SA-NET优雅地将多个平行和连续的光谱分析程序集成在一起,以使跨不同单位的交互式学习启用互动式学习; (ii)我们的SA-NET可以在斑块级别识别不同图像之间的局部相似性,因此可以实现更高水平的对阻塞的鲁棒性。许多流行数据集的广泛实验支持我们提出的SA-NET在许多图像聚类应用程序上优于11个基准测试。
Although supervised deep representation learning has attracted enormous attentions across areas of pattern recognition and computer vision, little progress has been made towards unsupervised deep representation learning for image clustering. In this paper, we propose a deep spectral analysis network for unsupervised representation learning and image clustering. While spectral analysis is established with solid theoretical foundations and has been widely applied to unsupervised data mining, its essential weakness lies in the fact that it is difficult to construct a proper affinity matrix and determine the involving Laplacian matrix for a given dataset. In this paper, we propose a SA-Net to overcome these weaknesses and achieve improved image clustering by extending the spectral analysis procedure into a deep learning framework with multiple layers. The SA-Net has the capability to learn deep representations and reveal deep correlations among data samples. Compared with the existing spectral analysis, the SA-Net achieves two advantages: (i) Given the fact that one spectral analysis procedure can only deal with one subset of the given dataset, our proposed SA-Net elegantly integrates multiple parallel and consecutive spectral analysis procedures together to enable interactive learning across different units towards a coordinated clustering model; (ii) Our SA-Net can identify the local similarities among different images at patch level and hence achieves a higher level of robustness against occlusions. Extensive experiments on a number of popular datasets support that our proposed SA-Net outperforms 11 benchmarks across a number of image clustering applications.