论文标题
通过执行区域分离来促进类似网络的结构的连通性
Promoting Connectivity of Network-Like Structures by Enforcing Region Separation
论文作者
论文摘要
我们提出了一种新型的,以连接性的损失函数,用于训练深层卷积网络,以从空中图像中重建类似网络的结构,例如道路和灌溉运河。我们损失背后的主要思想是根据它们在图像的背景区域之间产生的断开连接来表达道路或运河的连通性。简而言之,预测的道路上的差距导致两个背景区域,这些区域位于地面真相路的相对侧,以触摸预测。我们的损失功能旨在防止背景区域之间的这种不必要的联系,因此缩小了预测道路的差距。它还通过惩罚背景区域的不必要的脱节来防止预测假的正路和运河。为了捕获短暂的,终止的道路细分市场,我们评估了小型图像作物中的损失。我们在两个标准的道路基准和一个新的灌溉渠数据集的实验中显示,通过我们的损失功能训练的回合恢复了道路连接,以至于足以使他们的输出骨架以产生最新的地图。我们方法的一个明显优势是,可以将损失插入任何现有的培训设置,而无需进行进一步的修改。
We propose a novel, connectivity-oriented loss function for training deep convolutional networks to reconstruct network-like structures, like roads and irrigation canals, from aerial images. The main idea behind our loss is to express the connectivity of roads, or canals, in terms of disconnections that they create between background regions of the image. In simple terms, a gap in the predicted road causes two background regions, that lie on the opposite sides of a ground truth road, to touch in prediction. Our loss function is designed to prevent such unwanted connections between background regions, and therefore close the gaps in predicted roads. It also prevents predicting false positive roads and canals by penalizing unwarranted disconnections of background regions. In order to capture even short, dead-ending road segments, we evaluate the loss in small image crops. We show, in experiments on two standard road benchmarks and a new data set of irrigation canals, that convnets trained with our loss function recover road connectivity so well, that it suffices to skeletonize their output to produce state of the art maps. A distinct advantage of our approach is that the loss can be plugged in to any existing training setup without further modifications.