论文标题
布朗陀螺的工程快速平衡
Engineered Swift Equilibration of a Brownian Gyrator
论文作者
论文摘要
在随机热力学的背景下,最近提出了非平衡稳态的最小模型:布朗旋转剂(BG)。它描述了在经典的Ornstein-Uhlenbeck过程中,粒子在二维的谐波电位中的随机运动过度阻尼,但考虑了两个独立的热浴的同时存在。当两个浴缸的温度不同时,稳定的BG表现出旋转电流,这是非平衡动力学的明确特征。在这里,我们考虑了时间相关的电位,并应用了一种反设计方法来精确地得出所需的协议,以在有限的时间$τ$中从初始稳态转换为最终稳态。可以通过首先选择任意的准静态对应物(几乎没有约束)来构建协议,然后添加有限的时间贡献,该贡献仅取决于所选的准静态形式,并且订单为$ 1/τ$。我们还获得了转换条件,在有限的时间内 - 可节省内部能量,可用于诸如显微镜热发动机的设计。我们的研究将有限的随机热力学扩展到连接非平衡稳态状态的转化。
In the context of stochastic thermodynamics, a minimal model for non equilibrium steady states has been recently proposed: the Brownian Gyrator (BG). It describes the stochastic overdamped motion of a particle in a two dimensional harmonic potential, as in the classic Ornstein-Uhlenbeck process, but considering the simultaneous presence of two independent thermal baths. When the two baths have different temperatures, the steady BG exhibits a rotating current, a clear signature of non equilibrium dynamics. Here, we consider a time-dependent potential, and we apply a reverse-engineering approach to derive exactly the required protocol to switch from an initial steady state to a final steady state in a finite time $τ$. The protocol can be built by first choosing an arbitrary quasi-static counterpart - with few constraints - and then adding a finite-time contribution which only depends upon the chosen quasi-static form and which is of order $1/τ$. We also get a condition for transformations which - in finite time - conserve internal energy, useful for applications such as the design of microscopic thermal engines. Our study extends finite-time stochastic thermodynamics to transformations connecting non-equilibrium steady states.