论文标题

Maxwell-Scalar模型中导电球的自发标量

Spontaneous scalarization of a conducting sphere in Maxwell-scalar models

论文作者

Herdeiro, Carlos A. R., Ikeda, Taishi, Minamitsuji, Masato, Nakamura, Tomohiro, Radu, Eugen

论文摘要

我们研究了嵌入在平坦时空中的麦克斯韦 - 标准模型中的标准导电带电的球体的自发标量,其中标量场$ ϕ $是非微耦合与麦克斯韦电动力学的。该设置是爱因斯坦 - 马克斯韦 - 斯卡尔(广义标量tensor)模型中带电(真空)黑洞自发标量的玩具模型。在麦克斯韦 - 标准案例中,与黑洞案例不同,标量配置存在封闭式解决方案。我们为非微小耦合的三个插图计算这些配置:一个\ textIt {恰好}线性化的标量场方程,其余两个产生第一个的非线性连续性。我们表明,以前的模型导致参数空间区域中的失控行为,并且库仑和标量解决方案在模型中均不稳定。但是后一个模型可以治愈这种行为,从而产生稳定的标量解决方案,这些解决方案比库仑偏爱。这与扩展的量表 - 高斯河网模型中的黑洞标量报告相似。此外,我们分析了边界条件选择对标量现象的影响。 Dirichlet和Neumann边界条件适用于无标量导电球(线性)稳定和不稳定的参数空间区域;但是辐射边界条件始终产生不稳定的无标量解决方案和对标量的偏爱。最后,我们按照标态化过程进行了全面的麦克斯韦 - 刻录系统的数值演变。他们证实了线性稳定性分析,并揭示了标态现象可以在定性上不同的方式发生。

We study the spontaneous scalarization of a standard conducting charged sphere embedded in Maxwell-scalar models in flat spacetime, wherein the scalar field $ϕ$ is nonminimally coupled to the Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized configurations. We compute these configurations for three illustrations of nonminimal couplings: one that \textit{exactly} linearizes the scalar field equation, and the remaining two that produce nonlinear continuations of the first one. We show that the former model leads to a runaway behaviour in regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in the model; but the latter models can heal this behaviour producing stable scalarized solutions that are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization in the extended-scalar-Gauss-Bonnet models. Moreover, we analyse the impact of the choice of the boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary conditions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar system, following dynamically the scalarization process. They confirm the linear stability analysis and reveal that the scalarization phenomenon can occur in qualitatively distinct ways.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源