论文标题
原子薄磁性双层中的巨型自旋转移扭矩
Giant spin transfer torque in atomically thin magnetic bilayers
论文作者
论文摘要
在空腔量子电动力学中,将利用定义腔的两个镜子之间的光子的多个反射,以增强腔内原子的光耦合。我们表明,这种用于增强飞行粒子与局部物体相互作用的范例可以推广到基于Van der Waals 2D磁铁的旋转型。通过磁性双层隧穿后,我们发现每个电子发病率的自旋传递扭矩可能会大于$ \ hbar/2 $,这是电子通过铁电磁单层的多反射路径使其成为其角动量转移的中间体。在隧道共振周围的广泛能量范围内,每个电子隧道的阻尼状自旋传输扭矩具有$ \ frac {\ hbar} {2} {2} \ tan {\ tan {\fracθ{2}} $的通用值,仅取决于磁置之间的角度$θ$。这些发现扩大了基于范德华磁体的高性能和高密度存储的磁化操作范围。
In cavity quantum electrodynamics, the multiple reflections of a photon between two mirrors defining a cavity is exploited to enhance the light-coupling of an intra-cavity atom. We show that this paradigm for enhancing the interaction of a flying particle with a localized object can be generalized to spintronics based on van der Waals 2D magnets. Upon tunneling through a magnetic bilayer, we find the spin transfer torques per electron incidence can become orders of magnitude larger than $\hbar/2$, made possible by electron's multi-reflection path through the ferromagnetic monolayers as an intermediate of their angular momentum transfer. Over a broad energy range around the tunneling resonances, the damping-like spin transfer torque per electron tunneling features a universal value of $\frac{\hbar}{2} \tan{\fracθ{2}}$, depending only on the angle $θ$ between the magnetizations. These findings expand the scope of magnetization manipulations for high-performance and high-density storage based on van der Waals magnets.