论文标题

关于冯·诺伊曼测量的最佳认证

On the optimal certification of von Neumann measurements

论文作者

Lewandowska, Paulina, Krawiec, Aleksandra, Kukulski, Ryszard, Pawela, Łukasz, Puchała, Zbigniew

论文摘要

在本报告中,我们研究了量子测量的认证,可以将其视为量子假设测试的扩展。该扩展还涉及对输入状态和测量程序的研究。在这里,我们将对两点(二进制)认证方案感兴趣,其中null和替代假设是单个元素集。我们的目标是将II型误差的概率最小化,并在某些固定的统计意义下。在本报告中,我们首先研究纯量子状态和统一渠道的两点认证,以便以后使用它们来证明我们的主要结果,这是单枪和平行场景中von Neumann测量的认证。根据我们的主要结果,遵循两个纯状态,单一操作和冯·诺伊曼测量结果的条件,无法完美区分,但仍可以获得给定统计意义的认证。此外,我们显示了量子通道或von Neumann测量的认证与$ q $数字范围的概念之间的联系。

In this report we study certification of quantum measurements, which can be viewed as the extension of quantum hypotheses testing. This extension involves also the study of the input state and the measurement procedure. Here, we will be interested in two-point (binary) certification scheme in which the null and alternative hypotheses are single element sets. Our goal is to minimize the probability of the type II error given some fixed statistical significance. In this report, we begin with studying the two-point certification of pure quantum states and unitary channels to later use them to prove our main result, which is the certification of von Neumann measurements in single-shot and parallel scenarios. From our main result follow the conditions when two pure states, unitary operations and von Neumann measurements cannot be distinguished perfectly but still can be certified with a given statistical significance. Moreover, we show the connection between the certification of quantum channels or von Neumann measurements and the notion of $q$-numerical range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源