论文标题
分类枚举不变性,ii:助理公式
Categorical Enumerative Invariants, II: Givental formula
论文作者
论文摘要
对于一对$(a,s)$,由光滑的,环状$ a_ \ infty $ -Algebra $ a $和在其Hochschild同源性Costello(2005)上分裂的Hodge过滤的$ s $ s $组成,使一个不变的人相关联,该公司猜想总的来说,总的来说,总的来说是Gromov-Gromov-Gromov-Gromov-Gromov-Gromov-Gromov-Gromov-Gromov-wenter的潜在潜力。 在本文中,我们为Costello的不变式提供了明确的,可计算的公式,因为Feynman在部分定向的稳定图上概括了。公式以至关重要的方式使用了Costello和作者前面定义的组合字符串顶点。在许多情况下,其他地方的明确计算证实了与已知的Gromov-Witten,Fan-Jarvis-Ruan-Witten和Bershadsky-Cecotti-Ooguri-Vafa不变性的分类不变性的平等。
To a pair $(A,s)$ consisting of a smooth, cyclic $A_\infty$-algebra $A$ and a splitting $s$ of the Hodge filtration on its Hochschild homology Costello (2005) associates an invariant which conjecturally generalizes the total descendant Gromov-Witten potential of a symplectic manifold. In this paper we give explicit, computable formulas for Costello's invariants, as Feynman sums over partially directed stable graphs. The formulas use in a crucial way the combinatorial string vertices defined earlier by Costello and the authors. Explicit computations elsewhere confirm in many cases the equality of categorical invariants with known Gromov-Witten, Fan-Jarvis-Ruan-Witten, and Bershadsky-Cecotti-Ooguri-Vafa invariants.