论文标题
在Fe $ _ {1-y} $ se $ _ {1-x} $ s $ _x $(0 $ \ leq $ \ leq x $ x $ \ leq $ \ leq $ 1,$ y $ y $ yq $ 0.1)的抑制$ _ {1-y} $ se $ _ {1-y} $ se $ _ {1-y} $ se $ _ {1-y} $ se $ _ {1-y}
Suppression of Superconductivity and Nematic Order in Fe$_{1-y}$Se$_{1-x}$S$_x$ (0$\leq$$x$$\leq$1, $y$$\leq$0.1) Crystals by Anion Height Disorder
论文作者
论文摘要
晶体化学与临界温度之间的连接$ t_c $是超导性的重点,这是物理,化学和材料科学中研究最广泛的现象之一。在大多数基于FE的超导体中,材料化学和物理学都要合谋,因此$ t_c $与高于Fe平面的平均阴离子高度相关。 e。使用FEAS4或FECH4(CH = TE,SE或S)四面体的几何形状。通过合成fe $ _ {1-y} $ se $ _ {1-x} $ s $ _x $(0 $ \ leq $ \ leq $ x $ x $ x $ \ leq $ 1,$ y $ y $ y $ y $ \ leq $ 0.1),我们发现在合成的晶体中,$ t_c $与诸如anion for for for for for for for for for for for for for for for for fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe a的。取而代之的是,冷却时的变化$ t_c $($ x $)和四方到 - 近距离(固体)过渡$ t_s $($ x $)与沿着晶体学C轴正交到Fe平面的Fe振动的混乱相关。该疾病源于S取代的随机性质,导致Fe(SE,S)4四面体,具有不同的Fe-SE和Fe-S键距离。我们的结果提供了$ T_C $和$ T_S $抑制阴离子高度的证据。在具有Fe/S构建块的新超导材料的计算预测中,可以利用与局部晶体化学的联系。
Connections between crystal chemistry and critical temperature $T_c$ have been in the focus of superconductivity, one of the most widely studied phenomena in physics, chemistry and materials science alike. In most Fe-based superconductors, materials chemistry and physics conspire so that $T_c$ correlates with the average anion height above the Fe plane, i. e. with the geometry of the FeAs4 or FeCh4 (Ch = Te, Se, or S) tetrahedron. By synthesizing Fe$_{1-y}$Se$_{1-x}$S$_x$ (0$\leq$$x$$\leq$1, $y$$\leq$0.1), we find that in alloyed crystals $T_c$ is not correlated with the anion height like it is for most other Fe superconductors. Instead, changes in $T_c$($x$) and tetragonal-to-orthorombic (nematic) transition $T_s$($x$) upon cooling are correlated with disorder in Fe vibrations in the direction orthogonal to Fe planes, along the crystallographic c-axis. The disorder stems from the random nature of S substitution, causing deformed Fe(Se,S)4 tetrahedra with different Fe-Se and Fe-S bond distances. Our results provide evidence of $T_c$ and $T_s$ suppression by disorder in anion height. The connection to local crystal chemistry may be exploited in computational prediction of new superconducting materials with Fe/S building blocks.