论文标题
封闭的歧管上严格凸的实体结构的空间
The Space of Strictly-convex Real-projective structures on a closed manifold
论文作者
论文摘要
这是一个说明性证明,如果$ m $是一个没有边界的紧凑型$ n $ manifold,那么$ m $上严格convex真实项目的固体集合是$ \ opperatorname {hom}的子集(π_1M,\ operatornAme {p operatorname {pgl}(pgl}(pgl}(n+1,\ math)
This is an expository proof that, if $M$ is a compact $n$-manifold with no boundary, then the set of holonomies of strictly-convex real-projective structures on $M$ is a subset of $\operatorname{Hom}(π_1M,\operatorname{PGL}(n+1,\mathbb RR))$ that is both open and closed.