论文标题
设计实验,以估算孤岛型问题适当的出口尺寸
Designing experiments for estimating an appropriate outlet size for a silo type problem
论文作者
论文摘要
通过二维筒仓通过颗粒物材料重力排出期间果酱形成的问题具有多种实际应用。在许多问题中,对最小出口大小的估计可以确保下一个干扰事件的时间足够长,这是至关重要的。假设时间是由带有两个未知参数的指数分布建模的,则该目标将转化为对参数非线性转换的最佳估计。我们以此目的获得了$ c $ - 最佳的实验设计,并应用了图形弹性方法。由于最佳设计取决于参数的标称值,因此还提供了灵敏度研究。最后,一项仿真研究检查了制作的近似值的性能,首先是通过Fisher Information矩阵进行的,然后使用要估计的函数的线性化。结果对于在实验室进行实验并翻译结果很有用,然后将结果转换为更大的情况。除应用程序外,本文中还开发了一般方法,即在非线性模型中对一维参数转换进行精确估计的问题。
The problem of jam formation during the discharge by gravity of granular material through a two-dimensional silo has a number of practical applications. In many problems the estimation of the minimum outlet size which guarantees that the time to the next jamming event is long enough is crucial. Assuming that the time is modeled by an exponential distribution with two unknown parameters, this goal translates to the optimal estimation of a non-linear transformation of the parameters. We obtain $c$-optimum experimental designs with that purpose, applying the graphic Elfving method. Since the optimal designs depend on the nominal values of the parameters, a sensitivity study is additionally provided. Finally, a simulation study checks the performance of the approximations made, first with the Fisher Information matrix, then with the linearization of the function to be estimated. The results are useful for experimenting in a laboratory and translating then the results to a larger scenario. Apart from the application a general methodology is developed in the paper for the problem of precise estimation of a one-dimensional parametric transformation in a non-linear model.