论文标题
玻色氧Halperin分数量子厅效果在填充因子$ν= 2/5 $
Bosonic Halperin fractional quantum Hall effect at filling factor $ν=2/5$
论文作者
论文摘要
具有多组分内部自由度的量子厅效应促进了新型新兴拓扑秩序的操场。在这里,我们在晶格Chern频段模型和Landau级别的连续模型中探索了两组分支硬核玻色子的相关拓扑阶段$ν= 2/5 $,在INTRACOMPONT和组件相互作用的相互作用下。我们给出了两个相互竞争的分数量子霍尔的出现的数值理论证明:Halperin(441)分数量子Hall效应和Halperin(223)分数量子厅效应。我们阐明了它们的拓扑特征,包括基态的堕落和分数量化的拓扑Chern数矩阵。最后,我们讨论与拓扑棋盘晶格中的近邻邻耦合相互调整时,与它们之间的相位过渡有关的方案。
Quantum Hall effects with multicomponent internal degrees of freedom facilitate the playground of novel emergent topological orders. Here, we explore the correlated topological phases of two-component hardcore bosons at a total filling factor $ν=2/5$ in both lattice Chern band models and Landau level continuum model under the interplay of intracomponent and intercomponent repulsions. We give the numerically theoretical demonstration of the emergence of two competing distinct fractional quantum Hall states: Halperin (441) fractional quantum Hall effect and Halperin (223) fractional quantum Hall effect. We elucidate their topological features including the degeneracy of the ground state and fractionally quantized topological Chern number matrix. Finally, we discuss scenarios related to phase transition between them when intercomponent nearest-neighbor coupling is tuned from weak to strong in topological checkerboard lattice.