论文标题
$ su_q(n)$和$ u_q(n)$的亨特公式
Hunt's Formula for $SU_q(N)$ and $U_q(N)$
论文作者
论文摘要
我们为量子组$ su_q(n)$和$ u_q(n)$的无限发电机提供狩猎类型公式。特别是,我们将这种发电机的分解为高斯部分和由线性功能确定的“跳跃类型”部分,该功能类似于莱维度量引起的功能。 $ su_q(n)$上的跳跃零件将进一步分解为现场量子子组$ su_q(n)$,$ n \ le n $的零件。就像在当地紧凑的谎言基团的经典狩猎公式中一样,一旦选择了一定的投影,成分就会变得独特。 $ u_q(n)$有类似的结果。
We provide a Hunt type formula for the infinitesimal generators of Lévy process on the quantum groups $SU_q(N)$ and $U_q(N)$. In particular, we obtain a decomposition of such generators into a gaussian part and a `jump type' part determined by a linear functional that resembles the functional induced by the Lévy measure. The jump part on $SU_q(N)$ decomposes further into parts that live on the quantum subgroups $SU_q(n)$, $n\le N$. Like in the classical Hunt formula for locally compact Lie groups, the ingredients become unique once a certain projection is chosen. There are analogous result for $U_q(N)$.