论文标题
编成两种全息图的确切结构
An Exact Construction of Codimension two Holography
论文作者
论文摘要
最近,提出了一种称为Wedge全息图的两种编码,作为ADS/CFT的概括。据推测,$ d+1 $ dimensional楔形时段中的引力理论是$ d-1 $ dimensional cft的双重双重楔形。在本文中,我们从ADS/CFT中的楔形全息图提供了重力溶液的精确结构。通过应用这种结构,我们证明了楔形全息图和ADS/CFT之间对真空爱因斯坦重力的等效性,通过证明经典的引力作用以及CFT分区在大N极限中的功能对于这两种理论是相同的。从某种意义上说,与ADS/CFT的等效性可以被视为楔形全息图的“证明”。作为这种强大的等效性的应用,我们很容易地得出全息韦伊尔异常,全息纠缠/rényi熵以及楔形全息图的相关功能。此外,我们讨论了楔形全息图的一般解决方案,并认为它们与具有合适物质字段的ADS/CFT相对应。有趣的是,我们注意到勃板上的内在ricci标量始终是一个常数,这取决于张力。最后,我们将讨论推广到DS/CFT和平面全息图。值得注意的是,我们发现可以在渐近广告中的Codimension两个全息图中统一ADS/CFT,DS/CFT和平面全息图。二元性不同于勃雷(Brane)上不同类型的空间。
Recently, a codimension two holography called wedge holography is proposed as a generalization of AdS/CFT. It is conjectured that a gravitational theory in $d+1$ dimensional wedge spacetime is dual to a $d-1$ dimensional CFT on the corner of the wedge. In this paper, we give an exact construction of the gravitational solutions for wedge holography from the ones in AdS/CFT. By applying this construction, we prove the equivalence between wedge holography and AdS/CFT for vacuum Einstein gravity, by showing that the classical gravitational action and thus the CFT partition function in large N limit are the same for the two theories. The equivalence to AdS/CFT can be regarded as a "proof" of wedge holography in a certain sense. As an application of this powerful equivalence, we derive easily the holographic Weyl anomaly, holographic Entanglement/Rényi entropy and correlation functions for wedge holography. Besides, we discuss the general solutions of wedge holography and argue that they correspond to the AdS/CFT with suitable matter fields. Interestingly, we notice that the intrinsic Ricci scalar on the brane is always a constant, which depends on the tension. Finally, we generalize the discussions to dS/CFT and flat space holography. Remarkably, we find that AdS/CFT, dS/CFT and flat space holography can be unified in the framework of codimension two holography in asymptotically AdS. Different dualities are distinguished by different types of spacetimes on the brane.