论文标题

与可再生能源集成的分配网格拓扑识别的混合框架

A Hybrid Framework for Topology Identification of Distribution Grid with Renewables Integration

论文作者

He, Xing, Qiu, Robert, Ai, Qian, Zhu, Tianyi

论文摘要

拓扑识别(TI)是分布网格中状态估计(SE)的关键任务,尤其是具有高质量可再生能源的关键任务。可再生能源的时间序列行为发起的不确定性几乎可以肯定会导致不良的TI结果而没有适当的治疗。这些不确定性在传统框架下是可以分析性的 - 它们通常是共同的空间依赖性,因此不能简单地将其视为白噪声。为此,本文提出了一个混合框架,以系统和理论的方式处理这些不确定性。特别是,研究了大数据分析以利用这些不确定性的共同空间统计特性。有了一些先验知识,首先建立了模型库来存储可数的网络配置典型模型。因此,每个银行模型的SE输出与我们的观察结果之间的差异能够被定义为矩阵变化 - 所谓的随机矩阵。为了深入了解随机矩阵,需要一个精心设计的度量空间。自动回归(AR)模型,因子分析(FA)和随机矩阵理论(RMT)与公制空间设计相连,然后对在高维(Vector)空间中进行的矩阵进行共同的时间空间分析。在提出的框架下,获得了一些大数据分析和理论结果,以提高TI性能。使用IEEE标准分布网络对我们的框架进行了验证,并在实践中具有某些字段数据。

Topology identification (TI) is a key task for state estimation (SE) in distribution grids, especially the one with high-penetration renewables. The uncertainties, initiated by the time-series behavior of renewables, will almost certainly lead to bad TI results without a proper treatment. These uncertainties are analytically intractable under conventional framework-they are usually jointly spatial-temporal dependent, and hence cannot be simply treated as white noise. For this purpose, a hybrid framework is suggested in this paper to handle these uncertainties in a systematic and theoretical way; in particular, big data analytics are studied to harness the jointly spatial-temporal statistical properties of those uncertainties. With some prior knowledge, a model bank is built first to store the countable typical models of network configurations; therefore, the difference between the SE outputs of each bank model and our observation is capable of being defined as a matrix variate-the so-called random matrix. In order to gain insight into the random matrix, a well-designed metric space is needed. Auto-regression (AR) model, factor analysis (FA), and random matrix theory (RMT) are tied together for the metric space design, followed by jointly temporal-spatial analysis of those matrices which is conducted in a high-dimensional (vector) space. Under the proposed framework, some big data analytics and theoretical results are obtained to improve the TI performance. Our framework is validated using IEEE standard distribution network with some field data in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源