论文标题

SCOUTER:基于插槽注意的分类器,用于可解释的图像识别

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

论文作者

Li, Liangzhi, Wang, Bowen, Verma, Manisha, Nakashima, Yuta, Kawasaki, Ryo, Nagahara, Hajime

论文摘要

在过去的几年中,可解释的人工智能一直在引起人们的关注。但是,大多数现有方法基于梯度或中间特征,这些特征与分类器的决策过程无直接涉及。在本文中,我们提出了一个基于插槽注意的分类器,称为SCOUTER,用于透明而准确的分类。与其他基于注意力的方法的两个主要区别包括:(a)SCOUTER的解释涉及每个类别的最终信心,提供更直观的解释,以及(b)所有类别都具有相应的正面或负面解释,这说明了“为什么图像为某个类别是某个类别”或“为什么图像不是某个类别的图像。”我们设计了针对Scouter量身定制的新损失,该损失控制模型的行为,以在正面和负面解释之间切换以及解释区域的大小。实验结果表明,SCOUTER可以根据各种指标提供更好的视觉解释,同时在中小型数据集上保持良好的准确性。

Explainable artificial intelligence has been gaining attention in the past few years. However, most existing methods are based on gradients or intermediate features, which are not directly involved in the decision-making process of the classifier. In this paper, we propose a slot attention-based classifier called SCOUTER for transparent yet accurate classification. Two major differences from other attention-based methods include: (a) SCOUTER's explanation is involved in the final confidence for each category, offering more intuitive interpretation, and (b) all the categories have their corresponding positive or negative explanation, which tells "why the image is of a certain category" or "why the image is not of a certain category." We design a new loss tailored for SCOUTER that controls the model's behavior to switch between positive and negative explanations, as well as the size of explanatory regions. Experimental results show that SCOUTER can give better visual explanations in terms of various metrics while keeping good accuracy on small and medium-sized datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源