论文标题

与奇数集团相交的Ramsey-Turán数字

Ramsey-Turán numbers for intersecting odd cliques

论文作者

Liu, Min

论文摘要

给定图形$ h $和a函数$ f:\ mathbb {z}^+ \ longrightArrow \ mathbb {z}^+ $,ramsey-turán的$ h $和$ f $,用$ rt(n,h,h,f(n)$表示的$ n $ g a $ g as a $ a $ as a $ a a $ a a $ as a $ a a $ a a $ a a $ a a $ a y a $ a y a $ a a $ as a a $ a a $ a a $ a不包含一组$ f(n)$独立的顶点。让$ r $成为一个积极的整数。 1969年,Erdős和Sós证明了$ rt(n,k_ {2r+1},o(n))= \ frac {n^2} {2} {2}(1- \ frac {1} {1} {r} {r} {r})+o(n^2)$。令$ f_k(2r+1)$表示图形由$ k $的完整图的副本$ k_ {2r+1} $共享一个顶点。在本文中,我们表明$ rt(n,f_k(2r+1),o(n))= \ frac {n^2} {2} {2} {2}(1- \ frac {1} {1} {r} {r})+O(n^2)$,与$ rt(n,k_ k_ k_ k_ {2r+1}} $(n)相同。

Given a graph $H$ and a function $f:\mathbb{Z}^+ \longrightarrow \mathbb{Z}^+ $, the Ramsey-Turán number of $H$ and $f$, denoted by $RT(n, H, f(n))$, is the maximum number of edges a graph $G$ on $n$ vertices can have, which does not contain $H$ as a subgraph and also does not contain a set of $f(n)$ independent vertices. Let $r$ be a positive integer. In 1969, Erdős and Sós proved that $RT(n,K_{2r+1},o(n))=\frac{n^2}{2}(1-\frac{1}{r})+o(n^2)$. Let $F_k(2r+1)$ denote the graph consisting of $k$ copies of complete graphs $K_{2r+1}$ sharing exactly one vertex. In this paper, we show that $RT(n,F_k(2r+1),o(n))=\frac{n^2}{2}(1-\frac{1}{r})+o(n^2)$, which is of the same magnitude with $RT(n, K_{2r+1}, o(n))$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源