论文标题
数学形态通过类别理论
Mathematical Morphology via Category Theory
论文作者
论文摘要
数学形态为图像处理区域贡献了许多有利可图的工具。其中一些被认为是基本的,但在许多各种应用程序中最重要的数据处理基础。在本文中,我们修改了形态学操作的基础,例如扩张和侵蚀,利用(类别理论)中使用极限和共限制的函数。采用图像的众所周知的矩阵表示形式,矩阵的类别称为MAT,可以表示为图像。通过在布尔和(Max,+)半含量等各种半连接上丰富的垫子,可以使用MAT中的分类张量产品来得出二进制和灰度图像的经典定义。通过手动的扩张操作,可以使用著名的张量 - 辅助辅助来达到侵蚀。这种方法使我们能够在两个图像之间定义新型的扩张和侵蚀,这些图像由矩阵表示,使用布尔和(max,+)半序列以外的其他半矩阵表示。类别理论的形态操作的观点也可以阐明据称概念,即数学形态是线性逻辑的模型。
Mathematical morphology contributes many profitable tools to image processing area. Some of these methods considered to be basic but the most important fundamental of data processing in many various applications. In this paper, we modify the fundamental of morphological operations such as dilation and erosion making use of limit and co-limit preserving functors within (Category Theory). Adopting the well-known matrix representation of images, the category of matrix, called Mat, can be represented as an image. With enriching Mat over various semirings such as Boolean and (max,+) semirings, one can arrive at classical definition of binary and gray-scale images using the categorical tensor product in Mat. With dilation operation in hand, the erosion can be reached using the famous tensor-hom adjunction. This approach enables us to define new types of dilation and erosion between two images represented by matrices using different semirings other than Boolean and (max,+) semirings. The viewpoint of morphological operations from category theory can also shed light to the claimed concept that mathematical morphology is a model for linear logic.