论文标题
通过可解释的超声图分析加速COVID-19的差异诊断
Accelerating COVID-19 Differential Diagnosis with Explainable Ultrasound Image Analysis
论文作者
论文摘要
控制Covid-19的大流行在很大程度上取决于快速,安全和高度可用的诊断工具的存在。与CT或X射线相比,超声波具有许多实际的优势,并且可以用作全球适用的一线考试技术。我们为COVID-19提供了最大的公开肺超声(US)数据集,该数据集由三个类别(Covid-19,细菌性肺炎和健康对照组)的106个视频组成;由医学专家策划和批准。在此数据集上,我们对深度学习方法对COVID-19的鉴别诊断的价值进行了深入研究。我们提出了一个基于框架的卷积神经网络,该网络正确地对COVID-19 US视频进行了敏感性为0.98+-0.04,特异性为0.91+-08(基于框架的灵敏度为0.93+-0.05,特异性0.87+-0.07)。我们进一步采用了类激活图来在肺部生物标志物的时空定位中定位,随后在与医学专家的一项蒙住眼睛的研究中,我们随后验证了人类的环境。为了提高可扩展性和鲁棒性,我们进行了消融研究,以比较移动友好,基于视频和视频的体系结构,并通过Aleatoric和认识论不确定性估计来显示最佳模型的可靠性。我们希望为社区的努力铺平道路,以实现可访问,高效和可解释的筛查方法,我们已经开始致力于对拟议方法的临床验证。数据和代码公开可用。
Controlling the COVID-19 pandemic largely hinges upon the existence of fast, safe, and highly-available diagnostic tools. Ultrasound, in contrast to CT or X-Ray, has many practical advantages and can serve as a globally-applicable first-line examination technique. We provide the largest publicly available lung ultrasound (US) dataset for COVID-19 consisting of 106 videos from three classes (COVID-19, bacterial pneumonia, and healthy controls); curated and approved by medical experts. On this dataset, we perform an in-depth study of the value of deep learning methods for differential diagnosis of COVID-19. We propose a frame-based convolutional neural network that correctly classifies COVID-19 US videos with a sensitivity of 0.98+-0.04 and a specificity of 0.91+-08 (frame-based sensitivity 0.93+-0.05, specificity 0.87+-0.07). We further employ class activation maps for the spatio-temporal localization of pulmonary biomarkers, which we subsequently validate for human-in-the-loop scenarios in a blindfolded study with medical experts. Aiming for scalability and robustness, we perform ablation studies comparing mobile-friendly, frame- and video-based architectures and show reliability of the best model by aleatoric and epistemic uncertainty estimates. We hope to pave the road for a community effort toward an accessible, efficient and interpretable screening method and we have started to work on a clinical validation of the proposed method. Data and code are publicly available.