论文标题

在容忍反馈顶点套件上

On Fault Tolerant Feedback Vertex Set

论文作者

Misra, Pranabendu

论文摘要

针对各种网络设计问题的耐故障数据结构的研究是计算机科学研究的重要领域。同样,对NP完整问题的研究在于计算机科学的核心,其算法和复杂性有许多结果。在本文中,我们提出了计算耐受解决方案解决NP完全问题问题的问题;那是计算一个可以在几个组成元素的“失败”中生存的解决方案。该概念出现在各种理论和实用的设置中,例如估计网络可靠性,内核化(又称实例压缩),近似算法等。在本文中,我们试图强调这些问题以进行进一步研究。 作为一个具体的示例,我们研究了经典反馈顶点集(FVS)问题的耐故障版本,该版本称为FALT耐受反馈顶点集(FT-FVS)。回想一下,在FVS中,输入是一个图$ g $,目的是计算最小的顶点$ s $的子集,以便$ g-s $是森林。在ft -fvs中,目标是计算一个最小子集$ s $的顶点,以便$ g-(s \ setMinus \ {v \})$是v(g)$中任何$ v \的森林。在这里,顶点$ v $表示单个顶点故障。我们表明,此问题是NP完整的,然后呈现一个恒定因子近似算法以及由解决方案大小参数化的fpt-Algorithm。我们认为,计算可容忍解决方案到各种NP完整问题的问题是未来研究的有趣方向。

The study of fault-tolerant data structures for various network design problems is a prominent area of research in computer science. Likewise, the study of NP-Complete problems lies at the heart of computer science with numerous results in algorithms and complexity. In this paper we raise the question of computing fault tolerant solutions to NP-Complete problems; that is computing a solution that can survive the "failure" of a few constituent elements. This notion has appeared in a variety of theoretical and practical settings such as estimating network reliability, kernelization (aka instance compression), approximation algorithms and so on. In this paper, we seek to highlight these questions for further research. As a concrete example, we study the fault-tolerant version of the classical Feedback Vertex Set (FVS) problem, that we call Fault Tolerant Feedback Vertex Set (FT-FVS). Recall that, in FVS the input is a graph $G$ and the objective is to compute a minimum subset of vertices $S$ such that $G-S$ is a forest. In FT-FVS, the objective is to compute a minimum subset $S$ of vertices such that $G - (S \setminus \{v\})$ is a forest for any $v \in V(G)$. Here the vertex $v$ denotes a single vertex fault. We show that this problem is NP-Complete, and then present a constant factor approximation algorithm as well as an FPT-algorithm parameterized by the solution size. We believe that the question of computing fault tolerant solutions to various NP-Complete problems is an interesting direction for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源