论文标题
具有ATTOSEND分辨率的光场的片上抽样
On-chip sampling of optical fields with attosecond resolution
论文作者
论文摘要
用亚周期分辨率对任意电场进行的时间域采样,可以对系统对电磁照明的响应进行完整的时频分析。这提供了对仅吸收光谱而无法提供的动态信息的访问,并且最近通过在红外测量中显示了时间域光视场采样对分子敏感性和检测限制与传统光谱方法相比,可显着改善。尽管有许多科学和技术动机,在可见到近红外光谱区域中运行的时间域,光场采样系统很少访问,需要大型驱动脉冲能量,以及大型激光放大器系统,笨重的设备和真空环境。在这里,我们演示了一种全面的光电设备,能够在环境条件下对任意,低能,近红外波形进行采样。我们的固态集成检测器通过产生芯片上的attosecond Electron爆发来实现PETAHERTZ级的开关速度,从而实现PETAHERTZ级的开关速度。这些爆发用于探测弱光瞬变的电场。我们通过使用〜50 PJ近红外驱动脉冲采样〜5 FJ的电场,宽带近红外超快激光脉冲来证明我们的设备。我们的抽样测量结果恢复了弱的纳米antennas $ in 〜Situ $的弱光学瞬变以及局部等离子动力学。这种现场采样设备(其紧凑的足迹和低脉冲能量要求)为各种应用提供了机会,包括:分子指纹区域中的宽带时间域光谱,非线性现象的时间域分析,以及对强场上光 - 磁性相互作用的详细研究。
Time-domain sampling of arbitrary electric fields with sub-cycle resolution enables a complete time-frequency analysis of a system's response to electromagnetic illumination. This provides access to dynamic information that is not provided by absorption spectra alone, and has recently been shown through measurements in the infrared that time-domain optical-field sampling offers significant improvements with regard to molecular sensitivity and limits of detection compared to traditional spectroscopic methods. Despite the many scientific and technological motivations, time-domain, optical-field sampling systems operating in the visible to near-infrared spectral regions are seldom accessible, requiring large driving pulse energies, and large laser amplifier systems, bulky apparatuses, and vacuum environments. Here, we demonstrate an all-on-chip, optoelectronic device capable of sampling arbitrary, low-energy, near-infrared waveforms under ambient conditions. Our solid-state integrated detector uses optical-field-driven electron emission from resonant nanoantennas to achieve petahertz-level switching speeds by generating on-chip attosecond electron bursts. These bursts are used to probe the electric field of weak optical transients. We demonstrated our devices by sampling the electric field of a ~5 fJ, broadband near-infrared ultrafast laser pulse using a ~50 pJ near-infrared driving pulse. Our sampling measurements recovered the weak optical transient as well as localized plasmonic dynamics of the emitting nanoantennas $in~situ$. This field-sampling device--with its compact footprint and low pulse-energy requirements--offers opportunities in a variety of applications, including: broadband time-domain spectroscopy in the molecular fingerprint region, time-domain analysis of nonlinear phenomena, and detailed studies of strong-field light-matter interactions.