论文标题
关于三分切和同谋的讲义
Lecture notes on trisections and cohomology
论文作者
论文摘要
在这些注释中,我们描述了$ h^2(x)$的几种几何解释,当$ x $是一个三斜线的4个manifold时。主要见解是,通过类似于霍奇理论和代数几何学中的捆捆同学,可以将$ h^2(x)$的类中的类插入$“(1,1)” $ - 类。这些笔记在2020年春季,在Max Planck数学研究所在Max Planck数学研究所进行了流产的研讨会的前半部分。
In these notes, we describe several geometric interpretations of $H^2(X)$ when $X$ is a trisected 4-manifold. The main insight is that, by analogy with Hodge theory and sheaf cohomology in algebraic geometry, classes in $H^2(X)$ can be usefully interpeted as $"(1,1)"$-classes. These notes formed the first half of an aborted seminar on symplectic trisections at the Max Planck Institute for Mathematics during Spring 2020.