论文标题

二阶不变域保存可压缩的Navier的近似 - Stokes方程

Second-order invariant domain preserving approximation of the compressible Navier--Stokes equations

论文作者

Guermond, Jean-Luc, Maier, Matthias, Popov, Bojan, Tomas, Ignacio

论文摘要

我们为可压缩的Navier-Stokes方程提供了一种完全离散的近似技术,该方程在时间和空间,半幅图上是二阶精确的,并保证保证是不变的域。对时间步的限制是标准双曲线CFL条件,即$τ\ lyssim \ mathcal {o}(h)/v $,其中$ v $是某些参考速度量表,而$ h $ the典型的网格size。

We present a fully discrete approximation technique for the compressible Navier-Stokes equations that is second-order accurate in time and space, semi-implicit, and guaranteed to be invariant domain preserving. The restriction on the time step is the standard hyperbolic CFL condition, ie $τ\lesssim \mathcal{O}(h)/V$ where $V$ is some reference velocity scale and $h$ the typical meshsize.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源