论文标题

中央限制定理和bootstrap近似在高维度:接近$ 1/\ sqrt {n} $通过隐式平滑

Central Limit Theorem and Bootstrap Approximation in High Dimensions: Near $1/\sqrt{n}$ Rates via Implicit Smoothing

论文作者

Lopes, Miles E.

论文摘要

高斯和自举近似的非反应界限最近引起了对高维统计的重大兴趣。本文在多元kolmogorov距离方面研究了浆果 - 埃斯尼的界限,以$ n $随机向量为$ p $ - 尺寸和i.i.d。到目前为止,越来越多的工作已经建立了对$ p $的轻度对数依赖性的界限。但是,开发与$ n^{ - 1/2} $依赖于$ n $的相应界限的问题基本上尚未解决。在具有亚高斯或次指定条目的随机向量的设置中,本文以接近$ n^{ - 1/2} $依赖关系建立边界,用于高斯和自举近似。此外,这些证明与其他最近的方法有很大不同,并利用了Lindeberg插值中的“隐式平滑”操作。

Non-asymptotic bounds for Gaussian and bootstrap approximation have recently attracted significant interest in high-dimensional statistics. This paper studies Berry-Esseen bounds for such approximations with respect to the multivariate Kolmogorov distance, in the context of a sum of $n$ random vectors that are $p$-dimensional and i.i.d. Up to now, a growing line of work has established bounds with mild logarithmic dependence on $p$. However, the problem of developing corresponding bounds with near $n^{-1/2}$ dependence on $n$ has remained largely unresolved. Within the setting of random vectors that have sub-Gaussian or sub-exponential entries, this paper establishes bounds with near $n^{-1/2}$ dependence, for both Gaussian and bootstrap approximation. In addition, the proofs are considerably distinct from other recent approaches and make use of an "implicit smoothing" operation in the Lindeberg interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源