论文标题
ERDS的空间因素的表征
A characterization of Erdős space factors
论文作者
论文摘要
我们证明,只有$ x $具有C-setski的sierpiński分层,几乎零维空间$ x $是一个空间因素。我们将此特征应用于C-stet Erds空间因素的可计数的空间。我们表明,通过给出强烈的$σ$ - complete,而无需$σ$ - complete示例几乎零维$ f_ {σΔ} $ - 不是ERDS空间因子的空间,Erdős$ \ mathfrak e $是不稳定的。这回答了Dijkstra和Van Mill的问题。
We prove that an almost zero-dimensional space $X$ is an Erdős space factor if and only if $X$ has a Sierpiński stratification of C-sets. We apply this characterization to spaces which are countable unions of C-set Erdős space factors. We show that the Erdős space $\mathfrak E$ is unstable by giving strongly $σ$-complete and nowhere $σ$-complete examples of almost zero-dimensional $F_{σδ}$-spaces which are not Erdős space factors. This answers a question by Dijkstra and van Mill.