论文标题

统一的亲属验证方法

A Unified Approach to Kinship Verification

论文作者

Dahan, Eran, Keller, Yosi

论文摘要

在这项工作中,我们使用统一的多任务学习计划提出了一种基于深度学习的方法,以共同学习所有亲属关系。这使我们能够更好地利用典型的亲属验证的小型训练集。我们介绍了一种新颖的方法来融合亲属图像的嵌入,以避免过度拟合,这在训练此类网络中是一个普遍的问题。为训练集图像得出了一种自适应采样方案,以解决亲属验证数据集中固有的不平衡。一项彻底的消融研究例证了我们方法的有效性,当将其应用于野外,FG2018和FG2020数据集中时,实验证明的结果优于当代最先进的亲属验证结果。

In this work, we propose a deep learning-based approach for kin verification using a unified multi-task learning scheme where all kinship classes are jointly learned. This allows us to better utilize small training sets that are typical of kin verification. We introduce a novel approach for fusing the embeddings of kin images, to avoid overfitting, which is a common issue in training such networks. An adaptive sampling scheme is derived for the training set images to resolve the inherent imbalance in kin verification datasets. A thorough ablation study exemplifies the effectivity of our approach, which is experimentally shown to outperform contemporary state-of-the-art kin verification results when applied to the Families In the Wild, FG2018, and FG2020 datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源