论文标题
关于在多一对一的比赛中实现Leximin的公平和稳定性
On Achieving Leximin Fairness and Stability in Many-to-One Matchings
论文作者
论文摘要
在过去的几年中,在分配问题中的公平性方面有很多工作,其中必须将项目在具有个人偏好的代理商之间进行公平分配。相比之下,双方都有偏好的设置的公平性,即必须与其他代理相匹配的代理商的关注程度要少得多。此外,双面匹配文献主要集中在序偏见上。本文启动了稳定的基本估值中稳定的一对一比赛中的公平性研究。在现实世界中,我们研究了与稳定的多一对一比赛相比,我们研究了链酰蛋白的最优性。我们首先调查了与排名估值的匹配问题,在这些问题中,双方的所有代理都在另一侧的代理(但不一定是相同的估值)都具有相同的偏好订单或排名。在这里,我们提供了稳定匹配空间的完整表征。这导致了一种快速,一种新颖而有效的算法,以计算排名等距估值下的溶血素最佳稳定匹配(其中,对于每对代理,一种代理的估值是相同的)。在快速的基础上,我们提出了一种有效的算法,即Fast-Gen,该算法找到了leximin的最佳稳定匹配,以实现更一般的排名设置。当一侧有两个代理可能与其他代理相匹配时,严格的偏好就足以保证有效的算法。接下来,我们确定在没有排名和严格偏好的情况下(对两侧的代理数量无限制),找到Leximin最佳稳定匹配是NP-HARD。此外,由于排名较弱,即使在等距估值之下,问题也很强烈。实际上,当添加性和非阴性是唯一的假设时,我们表明,除非p = np,否则不可能有效的多项式因子近似。
The past few years have seen a surge of work on fairness in allocation problems where items must be fairly divided among agents having individual preferences. In comparison, fairness in settings with preferences on both sides, that is, where agents have to be matched to other agents, has received much less attention. Moreover, two-sided matching literature has largely focused on ordinal preferences. This paper initiates the study of fairness in stable many-to-one matchings under cardinal valuations. Motivated by real-world settings, we study leximin optimality over stable many-to-one matchings. We first investigate matching problems with ranked valuations where all agents on each side have the same preference orders or rankings over the agents on the other side (but not necessarily the same valuations). Here, we provide a complete characterisation of the space of stable matchings. This leads to FaSt, a novel and efficient algorithm to compute a leximin optimal stable matching under ranked isometric valuations (where, for each pair of agents, the valuation of one agent for the other is the same). Building upon FaSt, we present an efficient algorithm, FaSt-Gen, that finds the leximin optimal stable matching for a more general ranked setting. When there are exactly two agents on one side who may be matched to many agents on the other, strict preferences are enough to guarantee an efficient algorithm. We next establish that, in the absence of rankings and under strict preferences (with no restriction on the number of agents on either side), finding a leximin optimal stable matching is NP-Hard. Further, with weak rankings, the problem is strongly NP-Hard, even under isometric valuations. In fact, when additivity and non-negativity are the only assumptions, we show that, unless P=NP, no efficient polynomial factor approximation is possible.