论文标题

Möbius条的三角数量

Number of Triangulations of a Möbius Strip

论文作者

Véronique, Bazier-Matte, Ruiyan, Huang, Hanyi, Luo

论文摘要

考虑一个带有$ n $选择的点的莫比乌斯带。三角剖分是这些点中最大的弧收集,并将条带切成三角形。在本文中,我们证明了可以从$ 4^{n-1}+\ binom {2n-2} {N-1} $获得的$ n $选择点获得的所有三角形的数量,然后我们与Algebra aris crius crius crius crius crius criuss clusters conterius clusters {n-1} {n-1} $提供了。

Consider a Möbius strip with $n$ chosen points on its edge. A triangulation is a maximal collection of arcs among these points and cuts the strip into triangles. In this paper, we proved the number of all triangulations that one can obtain from a Möbius strip with $n$ chosen points on its edge is given by $4^{n-1}+\binom{2n-2}{n-1}$, then we made the connection with the number of clusters in the quasi-cluster algebra arising from the Möbius strip.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源