论文标题

EDGELOC:使用胶囊网络的稳健室内定位的边缘iot框架

EdgeLoc: An Edge-IoT Framework for Robust Indoor Localization Using Capsule Networks

论文作者

Ye, Qianwen, Fan, Xiaochen, Fang, Gengfa, Bie, Hongxia, Xiang, Chaocan, Song, Xudong, He, Xiangjian

论文摘要

在室内场景中对基于位置的服务的前所未有的需求,无线室内本地化已成为移动用户必不可少的。虽然GPS在室内空间无法使用,但WiFi RSS指纹已在无处不在的可访问性中变得很受欢迎。但是,在两个主要挑战中实现强大而有效的室内本地化是一项挑战。首先,可以通过随机信号波动来降低定位精度,这将影响传统的定位算法,这些算法只需从原始指纹数据中学习手工制作的特征即可。其次,移动用户对本地化延迟很敏感,但是常规的室内定位算法是计算密集型且耗时的。在本文中,我们提出了Edgeloc,这是一种使用胶囊网络的边缘iot框架,用于有效且稳健的室内定位。我们开发了一个具有CAPSNET的深度学习模型,以从WiFi指纹数据中有效提取分层信息,从而显着提高了本地化准确性。此外,我们通过使移动用户具有通过Edge Server良好训练的深度学习模型来实现边缘计算原型系统,以实现几乎实时的本地化过程。我们对超过33,600个数据点进行了一项现实世界现场实验研究,并对开放数据集进行了广泛的合成实验,并且实验结果验证了Edgeloc的有效性。在现场实验中,EDGELOC系统的最佳权衡取得了98.5%的定位精度。

With the unprecedented demand for location-based services in indoor scenarios, wireless indoor localization has become essential for mobile users. While GPS is not available at indoor spaces, WiFi RSS fingerprinting has become popular with its ubiquitous accessibility. However, it is challenging to achieve robust and efficient indoor localization with two major challenges. First, the localization accuracy can be degraded by the random signal fluctuations, which would influence conventional localization algorithms that simply learn handcrafted features from raw fingerprint data. Second, mobile users are sensitive to the localization delay, but conventional indoor localization algorithms are computation-intensive and time-consuming. In this paper, we propose EdgeLoc, an edge-IoT framework for efficient and robust indoor localization using capsule networks. We develop a deep learning model with the CapsNet to efficiently extract hierarchical information from WiFi fingerprint data, thereby significantly improving the localization accuracy. Moreover, we implement an edge-computing prototype system to achieve a nearly real-time localization process, by enabling mobile users with the deep-learning model that has been well-trained by the edge server. We conduct a real-world field experimental study with over 33,600 data points and an extensive synthetic experiment with the open dataset, and the experimental results validate the effectiveness of EdgeLoc. The best trade-off of the EdgeLoc system achieves 98.5% localization accuracy within an average positioning time of only 2.31 ms in the field experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源