论文标题
最近预测的三元硼化物HF3PB4:对这种最困难的硼最大相位物理特性的见解
Recently predicted ternary boride Hf3PB4: Insights into the physical properties of this hardest possible boride MAX phase
论文作者
论文摘要
在这项工作中,我们通过第一原理研究了机械性能,包括维克硬度和机械各向异性,电子电荷密度分布,费米表面,热力学和光学特性的最近预测的最近预测的热力学稳定最大相位硼化物HF3PB4。优化单元格的计算出的晶格常数与可预测数据的数据一致。将诸如HF3PB4 Boride的C44,B,G,Y,HMACRO和HMICRO之类的机械性能与现有最大相的机械性能进行了比较。到目前为止,迄今为止合成的最大化合物都没有比预测的HF3PB4纳米氨基氨酸更高的Hmacro和/或Hmicro。刚度常数(CIJ)的计算表明HF3PB4在机械上是稳定的。使用状态密度(DOS)和电荷密度映射(CDM),可以解释弹性模量和硬度参数的极高值。 HF3PB4的高刚度是由于额外的B原子而产生的,从而导致晶体中强大的B B B B共价键。频带结构和DOS计算用于确认HF-5D状态对费米水平附近电子状态的主要贡献的金属性能。计算了技术上重要的热参数,例如DEBYE温度,最小导热率,Gruneisen参数和HF3PB4的熔化温度。已经发现,HF3PB4的估计熔化温度在所有最大相纳米胺中也是最高的。对重要的光学常数进行了详细的计算和分析,并讨论了光电部门中可能应用的相关性。我们的研究表明,基于C44,Hmacro和Hmicro的值,HF3PB4有可能成为最难已知的最大阶段。
In this work, we have explored via first principles study of mechanical properties including Vickers hardness and mechanical anisotropy, electronic charge density distribution, Fermi surface, thermodynamic and optical properties of the recently predicted thermodynamically stable MAX phase boride Hf3PB4 for the first time. The calculated lattice constants of the optimized cell are consistent with those found by the predicted data available. Mechanical properties such as C44, B, G, Y, Hmacro and Hmicro of Hf3PB4 boride are compared with those of existing MAX phases. None of the MAX compounds synthesized so far has higher Hmacro and/or Hmicro than that of the predicted Hf3PB4 nanolaminate. Calculations of stiffness constants (Cij) indicate that Hf3PB4 is mechanically stable. The extraordinarily high values of elastic moduli and hardness parameters are explained with the use of density of states (DOS) and charge density mapping (CDM). The high stiffness of Hf3PB4 arises because of the additional B atoms which results in the strong B B covalent bonds in the crystal. The band structure and DOS calculations are used to confirm the metallic properties with dominant contribution from the Hf-5d states to the electronic states around the Fermi level. The technologically important thermal parameters such Debye temperature, minimum thermal conductivity, Gruneisen parameter and melting temperature of Hf3PB4 are calculated. It has been found that the estimated melting temperature of Hf3PB4 is also the highest among all the MAX phase nanolaminates. The important optical constants are calculated and analyzed in detail and their relevance to possible applications in the optoelectronic sectors is discussed. Our study reveals that Hf3PB4 has the potential to be the hardest known MAX phase based on the values of C44, Hmacro and Hmicro.