论文标题

狼牙棒:生成模型中会员隐私估算的灵活框架

MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models

论文作者

Xu, Yixi, Mukherjee, Sumit, Liu, Xiyang, Tople, Shruti, Dodhia, Rahul, Ferres, Juan Lavista

论文摘要

生成机器学习模型越来越被视为在机构之间共享敏感数据的一种方式。尽管一直在开发差异化生成建模方法,但这些方法通常会导致低于标准的样本质量,从而限制了它们在现实世界应用中的使用。另一项工作重点是开发产生模型,从而导致更高质量的样本,但目前缺乏任何正式的隐私保证。在这项工作中,我们为生成模型中的会员隐私估算提出了第一个正式框架。我们将成员隐私风险提出为培训样本和持有样本之间的统计差异,并提出基于样本的方法来估计这种分歧。与以前的作品相比,我们的框架更加逼真和灵活。首先,我们提供可概括的度量标准,以替代准确度量指标,尤其是对于不平衡的数据集。其次,我们放松了从先前研究中完全访问基础分布的假设,并提出了具有理论保证的基于样本的估计。第三,以及通过最佳会员优势估算人口级会员资格隐私风险,我们通过个人隐私风险提供个人级别的估计。第四,我们的框架使对手可以通过自定义查询访问训练有素的模型,而先前的工作需要特定的属性。

Generative machine learning models are being increasingly viewed as a way to share sensitive data between institutions. While there has been work on developing differentially private generative modeling approaches, these approaches generally lead to sub-par sample quality, limiting their use in real world applications. Another line of work has focused on developing generative models which lead to higher quality samples but currently lack any formal privacy guarantees. In this work, we propose the first formal framework for membership privacy estimation in generative models. We formulate the membership privacy risk as a statistical divergence between training samples and hold-out samples, and propose sample-based methods to estimate this divergence. Compared to previous works, our framework makes more realistic and flexible assumptions. First, we offer a generalizable metric as an alternative to the accuracy metric especially for imbalanced datasets. Second, we loosen the assumption of having full access to the underlying distribution from previous studies , and propose sample-based estimations with theoretical guarantees. Third, along with the population-level membership privacy risk estimation via the optimal membership advantage, we offer the individual-level estimation via the individual privacy risk. Fourth, our framework allows adversaries to access the trained model via a customized query, while prior works require specific attributes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源