论文标题
加速基于2PC的ML具有有限的信任硬件
Accelerating 2PC-based ML with Limited Trusted Hardware
论文作者
论文摘要
本文介绍了Otak的设计,实现和评估,该系统允许两个非碰撞云提供商运行机器学习(ML)推断,而无需了解推理的输入。此问题的先前工作主要依赖于高级加密图,例如两党安全计算(2PC)协议,这些协议可提供严格的保证,但遭受了高资源开销的困扰。 OTAK通过新的2PC协议提高了效率,该协议(i)量身定制了诸如功能和同型秘密共享等最原始的ML推理,并且(ii)使用可信赖的硬件以有限的能力来引导协议。同时,Otak通过在硬件中运行一个小代码,将其使用限制为预处理步骤,并通过不同供应商的异质信任的硬件平台分配信任,从而降低了对受信任硬件的信任假设。 OTAK的实施和评估表明,其CPU和网络间接费用转换为美元金额为5.4 $ - $ 385 $ \ tims $ $ \ tims $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ \ $ \ times $ $ \ $ \ times $ $ \ times $ $ \ $ \ times $ $ \ times $ $ \ times $ $ \ $ \ times $ $ \ $ \ times $。此外,Otak值得信赖的计算基础(可信赖的硬件中的代码)仅为1,300行代码,比先前基于硬件的工作中的代码大小低14.6 $ - $ 29.2 $ \ times $。
This paper describes the design, implementation, and evaluation of Otak, a system that allows two non-colluding cloud providers to run machine learning (ML) inference without knowing the inputs to inference. Prior work for this problem mostly relies on advanced cryptography such as two-party secure computation (2PC) protocols that provide rigorous guarantees but suffer from high resource overhead. Otak improves efficiency via a new 2PC protocol that (i) tailors recent primitives such as function and homomorphic secret sharing to ML inference, and (ii) uses trusted hardware in a limited capacity to bootstrap the protocol. At the same time, Otak reduces trust assumptions on trusted hardware by running a small code inside the hardware, restricting its use to a preprocessing step, and distributing trust over heterogeneous trusted hardware platforms from different vendors. An implementation and evaluation of Otak demonstrates that its CPU and network overhead converted to a dollar amount is 5.4$-$385$\times$ lower than state-of-the-art 2PC-based works. Besides, Otak's trusted computing base (code inside trusted hardware) is only 1,300 lines of code, which is 14.6$-$29.2$\times$ lower than the code-size in prior trusted hardware-based works.