论文标题

构造双曲线曲线均匀化的双曲信号集

Construction of Hyperbolic Signal Sets from the Uniformization of Hyperelliptic Curves

论文作者

Guazzi, Erika Patricia Dantas de Oliveira, Junior, Reginaldo Palazzo

论文摘要

在本文中,我们提出了一种新的方法,即通过使用紫红色曲线(FDES)在均匀化中使用Whittaker的提议来设计与组相匹配的双曲信号集(FDES)。这个系统过程由以下步骤组成:1)通过将离散的无内存通道(DMC)嵌入riemann表面,获得属G属; 2)在庞加莱磁盘中选择一组对称点以建立过椭圆形曲线; 3)Fuchsian群体统一区域是通过使用FDE的; 4)FDE线性独立解决方案的商,引起了相关的紫红色组的发电机。同等地,这意味着数字信号的决策区域(Voronoi区域)的确定。因此,实现了以下结果:1)从FDE的解决方案中,建立了Fuchsian的发电机。由于基本多边形的顶点位于单元磁盘的边界,因此其面积(最大)意味着符号误差概率是数字通信系统的性能度量; 2)建立了Tessellation {P,Q}参数与高纤维曲线的程度之间的关系。了解G,与高纤维化曲线程度和P相关的Polygon的侧面数量与惠特克(Whittaker)统一的过程得出的基本多边形的数量相关,Q的值是从Euler特征获得的,导致{4G,4G,4G}或{4G+2,2G+1}或{12G-6}或{12G-6,6,3} 3} Tessellation。这些镶嵌物由于其丰富的几何和代数结构而很重要,这都是经典和量子编码理论应用所必需的。

In this paper, we present a new approach to the problem of designing hyperbolic signal sets matched to groups by use of Whittaker's proposal in the uniformization of hyperelliptic curves via Fuchsian differential equations (FDEs). This systematic process consists of the steps: 1) Obtaining the genus, g, by embedding a discrete memoryless channel (DMC) on a Riemann surface; 2) Select a set of symmetric points in the Poincaré disk to establish the hyperelliptic curve; 3) The Fuchsian group uniformizing region comes by the use of the FDE; 4) Quotients of the FDE linearly independent solutions, give rise to the generators of the associated Fuchsian group. Equivalently, this implies the determination of the decision region (Voronoi region) of a digital signal. Hence, the following results are achieved: 1) from the solutions of the FDE, the Fuchsian group generators are established. Since the vertices of the fundamental polygon are at the boundary of unit disk, its area (largest possible) implies the least symbol error probability as a performance measure of a digital communication system; 2) a relation between the parameters of the tessellation {p,q} and the degree of the hyperelliptic curve is established. Knowing g, related to the hyperelliptic curve degree, and p, number of sides of the fundamental polygon derived from Whittaker's uniformizing procedure, the value of q is obtained from the Euler characteristic leading to one of the {4g,4g} or {4g+2, 2g+1} or {12g-6,3} tessellation. These tessellations are important due to their rich geometric and algebraic structures, both required in classical and quantum coding theory applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源