论文标题
空间各向异性与三角形海森堡模型中的进一步交换相互作用之间的相互作用
Interplay between spatial anisotropy and further exchange interactions in the triangular Heisenberg model
论文作者
论文摘要
我们研究了空间各向异性和在三角晶格上的旋转 - $ \ frac {1} {1} {1} {1} {1} {1} {2} $ heisenberg抗铁磁模型中的相互作用之间的相互作用。我们通过在平均场方法上方加入高斯波动来使用Schwinger玻色子理论。相图显示了相对于平均场的远距离线和不超增量的螺旋区域的强烈降低。这种减少伴随着其短距离顺序的出现,留下了充足的空间,价格为$ 0 $ -Flux和nematic Spin液体区域。值得注意的是,在空间各向同性线的附近,有一个范围如此脆弱,只有相称的$ 120^{\ circ} $néel的人幸存下来。与最近的变异蒙特卡洛预测的良好一致性为空间各向异性引起的丰富相图提供了支持。
We investigate the interplay between spatial anisotropy and further exchange interactions in the spin-$\frac{1}{2}$ Heisenberg antiferromagnetic model on a triangular lattice. We use the Schwinger boson theory by including Gaussian fluctuations above the mean-field approach. The phase diagram exhibits a strong reduction of the long range collinear and incommensurate spirals regions with respect to the mean-field ones. This reduction is accompanied by the emergence of its short range order counterparts, leaving an ample room for $0$-flux and nematic spin liquid regions. Remarkably, within the neighborhood of the spatially isotropic line, there is a range where the spirals are so fragile that only the commensurate $120^{\circ}$ Néel ones survive. The good agreement with recent variational Monte Carlo predictions gives support to the rich phase diagram induced by spatial anisotropy.