论文标题
CATGCN:具有分类节点功能的图形卷积网络
CatGCN: Graph Convolutional Networks with Categorical Node Features
论文作者
论文摘要
关于图形卷积网络(GCN)的最新研究表明,初始节点表示(即首次图形卷积之前的节点表示)在很大程度上影响最终模型性能。但是,当学习节点的初始表示形式时,大多数现有的工作都将节点特征的嵌入结合在一起,而无需考虑功能之间的相互作用(或特征嵌入式)。我们认为,当节点特征是分类的,例如,在许多现实世界中的应用程序(例如用户分析和推荐系统)中,特征交互通常带有重要信号来进行预测分析。忽略它们将导致次优初始节点表示,从而削弱后续图卷积的有效性。在本文中,我们提出了一种名为CATGCN的新GCN模型,该模型是针对节点特征分类时针对图形学习量身定制的。具体而言,我们将两种显式相互作用建模的方式集成到了初始节点表示的学习中,即每对节点特征上的局部交互建模以及在人工特征图上的全局交互建模。然后,我们通过基于邻域聚合的图形卷积来完善增强的初始节点表示。我们以端到端的方式训练CatGCN,并在半监督的节点分类中演示。从Tencent和Alibaba数据集中进行了三个用户分析任务(用户年龄,城市和购买水平的预测)进行的大量实验验证了CATGCN的有效性,尤其是在图形卷积之前执行特征交互模型的积极效果。
Recent studies on Graph Convolutional Networks (GCNs) reveal that the initial node representations (i.e., the node representations before the first-time graph convolution) largely affect the final model performance. However, when learning the initial representation for a node, most existing work linearly combines the embeddings of node features, without considering the interactions among the features (or feature embeddings). We argue that when the node features are categorical, e.g., in many real-world applications like user profiling and recommender system, feature interactions usually carry important signals for predictive analytics. Ignoring them will result in suboptimal initial node representation and thus weaken the effectiveness of the follow-up graph convolution. In this paper, we propose a new GCN model named CatGCN, which is tailored for graph learning when the node features are categorical. Specifically, we integrate two ways of explicit interaction modeling into the learning of initial node representation, i.e., local interaction modeling on each pair of node features and global interaction modeling on an artificial feature graph. We then refine the enhanced initial node representations with the neighborhood aggregation-based graph convolution. We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification. Extensive experiments on three tasks of user profiling (the prediction of user age, city, and purchase level) from Tencent and Alibaba datasets validate the effectiveness of CatGCN, especially the positive effect of performing feature interaction modeling before graph convolution.