论文标题
使用神经网络修剪和Cyclean在受约束的设备上启用图像识别
Enabling Image Recognition on Constrained Devices Using Neural Network Pruning and a CycleGAN
论文作者
论文摘要
智能摄像机越来越多地用于公共场所的监视解决方案中。当代计算机视觉应用程序可用于识别需要紧急服务干预的事件。智能摄像机可以安装在公民感到特别不安全的地方,例如,有事件历史的道路和地下通道。智能相机的一种有希望的方法是Edge AI,即在IoT设备上部署AI技术。但是,在受限设备上使用深层神经网络(DNN)实施资源需求技术,例如图像识别是一个重大挑战。在本文中,我们探讨了两种方法,以减少地下通道中当代图像识别的计算需求。首先,我们展示了成功的神经网络修剪,即,我们保留了可比的分类精度,只有1.1%的神经元中最先进的DNN体系结构中剩余的神经元。其次,我们演示了如何使用Cyclegan将分布外图像转换为操作设计域。我们认为,修剪和自行车手是在智能相机中有效的Edge AI的有前途的推动力。
Smart cameras are increasingly used in surveillance solutions in public spaces. Contemporary computer vision applications can be used to recognize events that require intervention by emergency services. Smart cameras can be mounted in locations where citizens feel particularly unsafe, e.g., pathways and underpasses with a history of incidents. One promising approach for smart cameras is edge AI, i.e., deploying AI technology on IoT devices. However, implementing resource-demanding technology such as image recognition using deep neural networks (DNN) on constrained devices is a substantial challenge. In this paper, we explore two approaches to reduce the need for compute in contemporary image recognition in an underpass. First, we showcase successful neural network pruning, i.e., we retain comparable classification accuracy with only 1.1\% of the neurons remaining from the state-of-the-art DNN architecture. Second, we demonstrate how a CycleGAN can be used to transform out-of-distribution images to the operational design domain. We posit that both pruning and CycleGANs are promising enablers for efficient edge AI in smart cameras.