论文标题

自动网络控制的基于图形神经网络的服务功能链

Graph Neural Network based Service Function Chaining for Automatic Network Control

论文作者

Heo, DongNyeong, Lange, Stanislav, Kim, Hee-Gon, Choi, Heeyoul

论文摘要

软件定义的网络(SDN)和网络功能虚拟化(NFV)通过减少支出通过减少支出,从而在基于软件的控制技术方面取得了巨大发展。服务功能链(SFC)是一项重要技术,可以在网络服务器中找到有效的路径来处理所有请求的虚拟化网络功能(VNF)。但是,SFC具有挑战性,因为即使对于复杂的情况,它也必须保持高质量的服务(QoS)。尽管已经针对具有高级智能模型(例如深神经网络(DNN))进行的此类任务进行了一些工作,但这些方法并不有效地利用网络的拓扑信息,并且不能应用于具有动态变化拓扑的网络,因为他们的模型假定拓扑是固定的。在本文中,我们为SFC提出了一种新的神经网络体系结构,该架构基于图形神经网络(GNN),考虑到网络拓扑的图形结构属性。提出的SFC模型由编码器和解码器组成,编码器在其中找到网络拓扑的表示,然后解码器估计了邻域节点的概率及其处理VNF的概率。在实验中,我们提出的体系结构的表现优于基于DNN的基线模型的先前性能。此外,基于GNN的模型可以应用于新的网络拓扑,而无需重新设计和重新训练。

Software-defined networking (SDN) and the network function virtualization (NFV) led to great developments in software based control technology by decreasing expenditures. Service function chaining (SFC) is an important technology to find efficient paths in network servers to process all of the requested virtualized network functions (VNF). However, SFC is challenging since it has to maintain high Quality of Service (QoS) even for complicated situations. Although some works have been conducted for such tasks with high-level intelligent models like deep neural networks (DNNs), those approaches are not efficient in utilizing the topology information of networks and cannot be applied to networks with dynamically changing topology since their models assume that the topology is fixed. In this paper, we propose a new neural network architecture for SFC, which is based on graph neural network (GNN) considering the graph-structured properties of network topology. The proposed SFC model consists of an encoder and a decoder, where the encoder finds the representation of the network topology, and then the decoder estimates probabilities of neighborhood nodes and their probabilities to process a VNF. In the experiments, our proposed architecture outperformed previous performances of DNN based baseline model. Moreover, the GNN based model can be applied to a new network topology without re-designing and re-training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源