论文标题
在约束随机图中断裂合奏等效性的频谱标志
A spectral signature of breaking of ensemble equivalence for constrained random graphs
论文作者
论文摘要
对于受约束约束的随机系统,微型典型合奏需要通过每个实现(“硬约束”)来满足约束,而规范合奏需要仅平均满足约束(“软约束”)。众所周知,对于受拓扑约束的随机图,当图形的大小倾向于无穷大时,可能会出现一体质量等效的破坏,这是由两个合奏的非呈现的特定相对熵发出的。我们调查了集合等效性在多大程度上通过该图的邻接矩阵的最大特征值表现出来。我们考虑了密集制度中约束的两个示例:(1)修复顶点的程度(=度序列); (2)修复顶点的程度(=边缘数的两倍)的总和。示例(1)施加了大量的局部约束,并已知会导致整体等价的破坏。示例(2)施加了一个全局的约束,并已知导致集成等效性。我们的工作假设是,整体等效性的破坏对应于两个合奏下最大特征值的预期值的不变差。我们验证,随着图的尺寸倾向于无穷大,两个集合中最大特征值的预期值之间的差异并不消失(1),而对于(2)而言都不会消失。我们分析中的一个关键工具是一种转移方法,该方法使用相对熵来确定是否可以从规范合奏中将概率估计值转移到微域合奏中,并说明了整体等效性的破坏可能会阻止这种情况的破坏。
For random systems subject to a constraint, the microcanonical ensemble requires the constraint to be met by every realisation ("hard constraint"), while the canonical ensemble requires the constraint to be met only on average ("soft constraint"). It is known that for random graphs subject to topological constraints breaking of ensemble equivalence may occur when the size of the graph tends to infinity, signalled by a non-vanishing specific relative entropy of the two ensembles. We investigate to what extent breaking of ensemble equivalence is manifested through the largest eigenvalue of the adjacency matrix of the graph. We consider two examples of constraints in the dense regime: (1) fix the degrees of the vertices (= the degree sequence); (2) fix the sum of the degrees of the vertices (= twice the number of edges). Example (1) imposes an extensive number of local constraints and is known to lead to breaking of ensemble equivalence. Example (2) imposes a single global constraint and is known to lead to ensemble equivalence. Our working hypothesis is that breaking of ensemble equivalence corresponds to a non-vanishing difference of the expected values of the largest eigenvalue under the two ensembles. We verify that, in the limit as the size of the graph tends to infinity, the difference between the expected values of the largest eigenvalue in the two ensembles does not vanish for (1) and vanishes for (2). A key tool in our analysis is a transfer method that uses relative entropy to determine whether probabilistic estimates can be carried over from the canonical ensemble to the microcanonical ensemble, and illustrates how breaking of ensemble equivalence may prevent this from being possible.