论文标题

具有系统尺寸的本征状期望值的收敛

Convergence of eigenstate expectation values with system size

论文作者

Huang, Yichen

论文摘要

了解热力学极限中物理量的渐近行为是统计力学中的一个基本问题。在本文中,我们研究了本地操作员的本征态期望值的速度,因为系统尺寸差异,能量密度的平稳函数。在任何空间尺寸中的翻译不变量子晶格系统中,我们证明除了零尺寸的本地运算符外,有限尺寸的特征态期望值与上述平滑函数的偏差是由$ 1/o(n)$($ n $ n $ n $ n of Systems systems systems Siges loce of上述平滑函数)。下边界均具有不管模型的可集成性或混沌性,并且在满足本征态热假说的系统中饱和。

Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translation-invariant quantum lattice systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is saturated in systems satisfying the eigenstate thermalization hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源