论文标题

在光跨度上,低营的嵌入和有效的少量图形遍历

On Light Spanners, Low-treewidth Embeddings and Efficient Traversing in Minor-free Graphs

论文作者

Cohen-Addad, Vincent, Filtser, Arnold, Klein, Philip N., Le, Hung

论文摘要

自从罗伯逊(Robertson)和西摩(Seymour)的基本工作以来,了解不包括加权图的最短指标的结构,即在不包括固定小调的加权图上获得的最短路径指标一直是一个重要的研究方向。一个基本的思想,有助于了解这些度量的结构特性并导致强大的算法结果,是构建一个“小复杂性”图,该图可在度量点对之间近似距离。我们显示了以下两个无少量指标的结构性结果: 1。构造光子集扳手。在多项式时间内,给定一个称为终端的顶点和$ε$,我们构建了一个子图,该子图可保留终端之间的所有成对距离,最大为$ 1+ε$因子,总重量为$o_ε(1)$ $乘以最小地台基的重量,占终端的最小地台树的重量。 2。将随机度量嵌入到低树宽图中的构造具有预期的添加扭曲$εd$。也就是说,给定一个直径$ d $的次要免费图$ g =(v,e,w)$和参数$ε$,我们构建了一个分发$ \ nathcal {d} $,而占主导地位的度量嵌入在treewidth-$ o_is(\ log log n)$图中,以使附加失散符合最多的$ + $。 我们重要的技术贡献之一是一个新颖的框架,它使我们能够将\ emph {两个问题}减少到有界直径的简单图上的问题。我们的结果具有以下算法后果:(1)无小指标中子集TSP的第一个有效近似方案; (2)在无少量指标中具有界限的车辆路由的第一个近似方案; (3)在有界属指标上具有有界能力的车辆路由的第一个有效近似方案。

Understanding the structure of minor-free metrics, namely shortest path metrics obtained over a weighted graph excluding a fixed minor, has been an important research direction since the fundamental work of Robertson and Seymour. A fundamental idea that helps both to understand the structural properties of these metrics and lead to strong algorithmic results is to construct a "small-complexity" graph that approximately preserves distances between pairs of points of the metric. We show the two following structural results for minor-free metrics: 1. Construction of a light subset spanner. Given a subset of vertices called terminals, and $ε$, in polynomial time we construct a subgraph that preserves all pairwise distances between terminals up to a multiplicative $1+ε$ factor, of total weight at most $O_ε(1)$ times the weight of the minimal Steiner tree spanning the terminals. 2. Construction of a stochastic metric embedding into low treewidth graphs with expected additive distortion $εD$. Namely, given a minor free graph $G=(V,E,w)$ of diameter $D$, and parameter $ε$, we construct a distribution $\mathcal{D}$ over dominating metric embeddings into treewidth-$O_ε(\log n)$ graphs such that the additive distortion is at most $εD$. One of our important technical contributions is a novel framework that allows us to reduce \emph{both problems} to problems on simpler graphs of bounded diameter. Our results have the following algorithmic consequences: (1) the first efficient approximation scheme for subset TSP in minor-free metrics; (2) the first approximation scheme for vehicle routing with bounded capacity in minor-free metrics; (3) the first efficient approximation scheme for vehicle routing with bounded capacity on bounded genus metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源