论文标题

量子退火器的高级无用技术

Advanced unembedding techniques for quantum annealers

论文作者

Pelofske, Elijah, Hahn, Georg, Djidjev, Hristo

论文摘要

D-WAVE量子退火器使通过在QUBO(二次无约束的二进制优化)中映射问题或以D-Wave芯片上的物理量子量子连接结构来获取NP硬问题的高质量解决方案。但是,后者受到限制,因为物理量子位之间只有所有成对耦合器的一小部分。因此,对给定问题实例的连接结构进行建模需要计算问题规范中变量的次要嵌入到逻辑Qubits上,该量子由几个“链接”的物理码头组成,以充当逻辑。退火后,不能保证所有链式量子位获得相同的值(对于ISING模型的-1或+1,对于Qubo,为0或1),并且存在几种方法可以为每个逻辑量子量赋予最终值(一个称为“无用”的过程)。在这项工作中,我们提出了针对四个重要的NP固定问题的量身定制的诱惑技术:最大组合,最大切割,最小顶点覆盖物和图形分配问题。我们的技术很简单,但可以利用解决问题的结构特性。我们将ERDőS-Rényi随机图作为输入,我们将无情的技术与三个受欢迎的技术进行比较(多数投票,随机加权和最大程度地减少能量)。我们证明,我们所提出的算法优于当前可用的算法,因为它们产生了更好的质量解决方案,同时又具有同样有效的效率。

The D-Wave quantum annealers make it possible to obtain high quality solutions of NP-hard problems by mapping a problem in a QUBO (quadratic unconstrained binary optimization) or Ising form to the physical qubit connectivity structure on the D-Wave chip. However, the latter is restricted in that only a fraction of all pairwise couplers between physical qubits exists. Modeling the connectivity structure of a given problem instance thus necessitates the computation of a minor embedding of the variables in the problem specification onto the logical qubits, which consist of several physical qubits "chained" together to act as a logical one. After annealing, it is however not guaranteed that all chained qubits get the same value (-1 or +1 for an Ising model, and 0 or 1 for a QUBO), and several approaches exist to assign a final value to each logical qubit (a process called "unembedding"). In this work, we present tailored unembedding techniques for four important NP-hard problems: the Maximum Clique, Maximum Cut, Minimum Vertex Cover, and Graph Partitioning problems. Our techniques are simple and yet make use of structural properties of the problem being solved. Using Erdős-Rényi random graphs as inputs, we compare our unembedding techniques to three popular ones (majority vote, random weighting, and minimize energy). We demonstrate that our proposed algorithms outperform the currently available ones in that they yield solutions of better quality, while being computationally equally efficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源